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A comprehensive review of methods of numerically generating curvilinear coordinate 
systems with coordinate lines coincident with all boundary segments is given. Some general 
mathematical framework and error analysis common to such coordinate systems is also 
included. The general categories of generating systems are those based on conformal mapping, 
orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic 
and hyperbolic partial differential equations, and systems generated algebraically by inter- 
polation among the boundaries. Also covered are the control of coordinate line spacing by 
functions embedded in the partial differential operators of the generating system and by subse- 
quent stretching transformation. Dynamically adaptive coordinate systems, coupled with the 
physical solution, and time-dependent systems that follow moving boundaries are treated. 
References reporting experience using such coordinate systems are reviewed as well as those 
covering the system development. 

A. INTRODUCTION 

In the past decade the numerical generation of curvilinear coordinate systems has 
provided the key to the development of finite difference solutions of partial 
differential equations on regions with arbitrarily shaped boundaries. Although much 
of the impetus for these developments has come from fluid dynamics, the techniques 
are equally applicable to heat transfer, electromagnetics, structures, and all other 
areas involving field solutions. 

With coordinate systems generated to maintain coordinate lines (surfaces in 3-D) 
coincident with the boundaries, finite difference codes can be written which are 
applicable to general configurations without the need of special procedures at the 
boundaries, Even when the boundaries are in motion, the use of such coordinate 
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systems allows all computation to be done on a fixed grid with a uniform square 
mesh in the transformed plane. This greatly simplifies the coding, particularly with 
regard to boundary conditions, which can now be represented without need of inter- 
polation. It is also possible to distribute the curvilinear grid lines in the physical 
plane with concentration of lines in regions of high gradients while maintaining the 
square grid in the transformed (computational) plane. This distribution of grid lines 
may also be selfadjusting to follow the developing gradients in a time-dependent 
physical solution. 

With such systems, the grid points may be thought of as a finite set of observers of 
the physical solution, stationed to be most effective in covering all of the action on 
the field. The structure of an intersecting net of families of coordinate lines allows the 
observers to be readily identified in relation to each other. This results in m&h more 
simple coding than would the use of a triangular structure or a random distribution of 
points. The grid generation system provides some influence of each observer on the 
others so that when one moves to get into a better position, its neighbors will follow 
in order to maintain smooth coverage of the field. The curvilinear coordinate system 
thus should cover the field, with coordinate lines (surfaces) coincident with all boun- 
daries. The distribution of lines should be smooth, with concentration in regions of 
high gradient. The system should ultimately be capable of sensing these gradients and 
dynamically adjusting itself to resolve them. 

Some of the basic ideas of the use of boundary-fitted curvilinear coordinate 
systems in the numerical solution of partial differential equations are discussed in 
Thompson [285]. Other discussions appear in Thompson et al. [286] and [288], 
Thames et al. [276], and Warsi and Thompson [312] among others, and particularly 
in [340]. Regardless of how the coordinate system was generated, numerical solutions 
of partial differential equations are done thereon by first transforming all partial 
derivatives (or integrals) analytically so that the curvilinear coordinates, rather than 
the physical coordinates, become the independent variables. Normal and tangential 
derivatives at boundaries are similarly transformed. (These transformation relations 
are given in Thompson [285] and in Thompson et al. [287] (see also [340]). The 
result is a set of partial differential equations and boundary conditions in which all 
derivatives (and integrals) are with respect to the curvilinear coordinates. These 
equations may then be expressed as difference equations on the square grid that is 
inherent in the transformed plane. There is thus no need for interpolation regardless 
of the shape of the boundaries or the distribution of the curvilinear coordinate lines in 
the field. 

Considerable progress has been made in the development of numerically generated 
coordinate systems, and a variety of generating systems have been presented in the 
literature. The present paper covers this progress through 1981, and attempts to place 
the different procedures in a unifying framework. Brief surveys of portions of this 
area have been given by Eiseman [76] and Thacker [274], the latter concentrating 
primarily on grids more suitable for finite element applications. Warsi [309] has 
given an extensive collection of concepts from tensor analysis and differential 
geometry applicable to the generation of curvilinear coordinate systems. Another 
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discussion is given in Eiseman [76], where these concepts are developed as part of a 
general survey on the generation and use of curvilinear coordinate systems. Eiseman 
includes a discussion on differential forms which is a fundamental part of modern 
differential geometry, but primarily restricts his development to Euclidean space. In 
contrast, Warsi has given a classical development that includes curved space, but not 
differential forms. 

Basic discussions of a number of generation techniques are contained in [340], 
together with applications to various areas involving the numerical solution of partial 
differential equations. This reference should be particularly helpful as an introduction 
to the generation and use of boundary-fitted coordinate systems in general. 

In the present survey, the emphasis is on coordinate systems, as opposed to the 
covering of a field with triangular elements or a random distribution of points. 
Neither of these latter collections of points is suitable for efficient finite difference 
solutions (although difference representations can be given on each, of course) 
because of the cumbersome process of identification of neighbors of a point and the 
lack of a banded structure in the matrices. Thus the subject of triangular mesh 
generators for finite element applications is not addressed here. 

In the interest of space, a few notational conventions have been adopted as follows: 
Two-dimensional and two dimensions will be abbreviated “2-D.” Subscripts and 
superscripts are assumed throughout to take the values 1, 2, 3, subject to the tensorial 
nature of the equations in question. The designation O-type refers to a coordinate 
system having lines encircling a body, while C-type indicates a system with lines 
emanating from a boundary, passing around a body and returning to the boundary. 

In the sections that follow, the various means of generating curvilinear coordinate 
systems are discussed. Basically, these procedures are of two general types: (1) 
solution of partial differential equations and (2) construction by algebraic transfor- 
mations. In the former, the partial differential system may, of course, be elliptic or 
hyperbolic. Included in elliptic systems are both the conformal and the quasicon- 
formal mappings, the former being orthogonal. Orthogonal systems do not have to be 
conformal, and may be generated from hyperbolic systems as well as from elliptic 
systems. Some procedures are designed to produce coordinates that are nearly 
orthogonal. The algebraic procedures include simple normalization of boundary 
curves, transtinite interpolation from boundary surfaces, the use of intermediate inter- 
polating surfaces, and various other techniques. The transformed planes are generally 
taken to be rectangular or composed of rectangular subregions, and a wide variety of 
configurations is possible. Coordinate systems may be generated separately for 
subregions in the physical plane and patched together to form a complete system. 

A number of procedures have been developed to control the distribution of the 
coordinate lines. Some of these are based on some a priori knowledge of the 
properties of physical solutions of interest, and some involve dynamic coupling of the 
coordinate system with the physical solution. Control has been implemented both 
through alteration of the generating system for the coordinates and through subse- 
quent transformation after a system has been generated. Some systems have also been 
made time-dependent in response to moving physical boundaries or developing 
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conditions in the physical solution. The coordinate system directly affects the 
accuracy of a numerical solution thereon, and much effort has been directed to the 
study of errors introduced by the coordinates. These include truncation error and 
errors arising from the lack of exact satisfaction of metric identities in the numerical 
representation. 

All of these considerations are discussed in the following sections in the light of the 
general framework given in Section B. Divisions into various categories have been 
made, but there is naturally some overlap of classifications in some instances. 
Articles are discussed not as entities, but as they relate to the various subjects 
considered. An index of all references to an article is included. 

Conformal mappings are discussed first in Section C. Such coordinate systems 
satisfy Laplace equations, and thus may be classified among the systems generated 
from elliptic partial differential systems. The actual construction, however, may be 
done by a sequence of basic algebraic complex transformations or superposition of 
singular solutions, as well as by numerical solution of the Laplace equations. The 
conformal systems are orthogonal, but orthogonal systems need not be conformal and 
may in fact be generated as the solution of hyperbolic systems as well as elliptic, or 
may be constructed by algebraic means. As noted in Section B, the application of a l- 
D stretching transformation to a conformal system preserves the orthogonality but 
not the conformality. It is also noted in Section B that orthogonal systems having the 
cell aspect ratio equal to a const # 1 are not conformal but do correspond to a 
conformal system through a linear transformation of either of the curvilinear coor- 
dinates to incorporate the constant value of the cell aspect ratio. Such systems are 
included in the discussions of Section D. Systems constructed specifically to be 
orthogonal, but not conformal, are discussed in Section E, whether the construction 
procedure is from elliptic or hyperbolic partial differential equations or from 
algebraic transformations. This is followed by a similar treatment of systems 
generated specifically to be nearly orthogonal in Section F. 

The discussions in Section G cover systems that are generated by solving elliptic 
partial differential systems without particular imposition of conformality or 
orthogonality. In the same manner, general systems generated by algebraic means are 
treated in Section H. Section I covers the various configurations of the transformed 
plane, and composite coordinate systems formed by the patching together of physical 
subregions are discussed in Section J, both of these topics being applicable in all 
construction procedures. 

The control of the coordinate line spacing through terms in a generating system of 
partial differential equations is discussed in Section K, and the use of stretching 
functions to redistribute the lines generated by any procedure is covered in Section L. 
The dynamic coupling of line control with a developing physical solution on the coor- 
dinate system is treated in Section M, and other time-dependent systems are discussed 
in Section N. The important topic of errors introduced into a physical solution by the 
coordinate system is the subject of Section 0, the related considerations regarding 
conservative differencing of the metrics appear in Section P, and some miscellaneous 
topics are discussed in Section Q. 
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The general framework discussed in the following section is set in standard tensor 
notation. The development of many of the relations given is necessarily omitted in the 
interest of space and reference must be made to the sources cited for complete 
understanding. Some readers may wish to proceed directly to the discussions of the 
various procedures for coordinate generation that begin in Section C. This can be 
done if one will be aware of the geometric meaning of some of the metric quantities 
as follows: The quantity g, is proportional to the cosine of the angle between a coor- 
dinate line along which the curvilinear coordinate <’ varies (the other two coordinates 
being constant along such a line) and a coordinate line along which I$ varies. Thus, 
g, vanishes for i #j for an orthogonal system. The quantity & (no summation) is 
proportional to the arc length along this coordinate line along which e varies. Then 
the arc length along a general curve (not necessarily a coordinate line) is given by 

ds2 = c g,, dr’ dr’ 
id 

The quantity fi is the familiar Jacobian of the transformation which measures the 
volume of a cell in 3-D (area in 2-D). Finally the cell aspect ratio, && (no 
summation), measures the ratio of the lengths of the cell sides. Throughout the 
discussions, (‘-line refers to a line on which the coordinate c is constant. 

B. GENERAL DEVELOPMENT 

A curvilinear coordinate system on a region D can be defined by mapping D onto 
a canonical region R. Although R is generally a rectangular region, it could be a 
circular disk, a spherical region, or any other two- or three-dimensional region for 
which a natural coordinate system can be easily defined. Suppose the equations 
which relate Cartesian (xi) and curvilinear coordinates (e) are given by 

(’ = F’(x, )...) X”) i = 1, 2 ,..., n, 

where n equals 2 or 3. In the development of this section it is assumed that <’ is at 
least second-order differentiable, i.e., r’ E C2(R). How the curvilinear coordinate 
system was generated is irrelevant. These results also apply piecewise to each 
subregion of a patched coordinate system. In the development of the differential 
equations method of coordinate generation, certain formulas connecting the 
Laplacians of the curvilinear coordinates with another second-order differential 
operator are needed for ease in transformation from D to R. 

The Laplacians of any set of curvilinear coordinates are given by 
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and the Cartesian coordinates satisfy the following partial differential system in terms 
of these Laplacians: 

tB.2) 

These last equations may also be written 

where the operator GS is defined in 3-D as 

( 
a2 2 

g=g d’-@+g22aq2 iL+g33 a2 + Q12 a2 at;2 - + 2g13 
a2 a2 

at aq 
-+2g23-- . 
2 x ar x ) 

Though all the quantities appearing in (B. l)-(B.3) have been defined in Warsi 
[309, pp. 58, 1481, some are restated below for the sake of completeness. Another 
discussion is given in Eiseman [76], where differential forms are used in the 
development. In (B.l)-(B.3), the c’ are the general coordinates, while the Xi are the 
rectangular Cartesian coordinates. A repeated index in the equations always implies 
summation over the range of index values. The coefficients g” are the contravariant 
components of the metric tensor which are related with the covariant components 
through the equation 

g, g'k = sjk ; 

Sj” being the Kronecker symbol. Further, the Christoffel symbols rij are defined as 

The covariant components of the metric tensor are given by 

where r is the general position vector. The contravariant components are given by 

d1 = gzz g33 - t g23)2, gg22 = g11 kc33 - (&3)2, gg33 = &?,I g22 - ( L?,2)2T 

gg 
12 

=g13 L?23 -812iT33, gg 
13 

=g12 g23 --13 g22, gg23 =g12g13 --ET11 g237 

g = 811 g22 g33 + %12 g13 g23 -(g23)2&l-(&3)2&2-(&2)2g33’ 

For a 2-D coordinate system (<, n), the coefficients gi3 = g,, = 0, g,, = 1, and the 
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derivatives with respect to C are zero. Using the summation convention in (B.3), and 
for the 3-D case writing 

x1=& x2 = q, x3 =[, 

the operator C@ used in (B.3) is obtained. 

1. Orthogonal Systems 

For an orthogonal system we have g i2 =gi3 =g,, = 0, so that (B.1) reduces to 

V2Y= (g,, g22 g33r1’2 z a hhFiz%Z)~ 

v2rl = (g,, g22 g33P2 q a GiYzxa 

V’C= (g,, g22 g33Y2 x a (4X). (B.4) 

It can be verified by a direct expansion, while using (B.4) and the condition of 
orthogonality g, = 0 (i #j), that the equations 

and 

are true. If, in addition to orthogonality, we have g,, = g,, = g,, = const, then (B.5) 
and (B.6) reduce to Laplace equations. 

For any orthogonal 2-D system, (B.4) becomes (since g,, = l), 

v2<= CL?,, g22~Y2~ a <dXl, v2rl = (g,, g22)-“2 -& a (da)’ P.7) 
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These equations may also be given in an equivalent form from (B.5): 

and (B.6) becomes 

$cx,&m+&Jgix2~=o~ $(v&m+;(Y,~~=o. 

P.9) 

The conditions of orthogonality in 2-D also lead to the relations, 

ti = zly az9 ry = -+lx lhG7E 
(B. 10) 

or, equivalently, 

x, = -Yr diizL Y, = XI dizG9 (B.ll) 

which require that g,, = 0. 
An orthogonal system in 2-D must satisfy (B.8) (or, equivalently, (B.9)) on the 

field and must satisfy (B. 10) (or (B.11)) on the boundary. Orthogonal systems are 
covered in Section E, and systems designed to approximate orthogonal systems are 
discussed in Section F. Starius [258] has shown that the partial differential system, 
(B.l l), is hyperbolic if 6 is a strictly decreasing function of \/gT;. Such hyper- 
bolic generating systems are included in Section E. 

2. Conformal Systems 

If the cell aspect ratio dx is constant, (B.8) reduces to Laplace equations, 
and (B.9) becomes, with dgx z a, the elliptic equations 

a2x,, + x,, = 0, a2Yrr + Y,, = 0. (B.12) 

Conditions (B.lO) and (B.11) become 

L=wy, t, = --ah (B.13) 

and 

x, = -ay,, Y, = “1. (B. 14) 

If, further, g,, = g,, , (B. 12) also reduces to Laplace equations, and (B. 11) becomes 
the Cauchy-Riemann conditions, so that the system is conformal. Conformal systems 
are discussed in Sections C and D. A system having dx = const # 1 can be 
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generated from a conformal system by transformation of either < or q to incorporate 
the nonunity value of dm. The resulting system will be orthogonal, but no 
longer conformal. Such systems are discussed in Section E. 
. Potter and Tuttle [219] have shown that in a plane, in the absence of singular 

points (sources or sinks), the specified boundary points on a given q-line will have a 
unique orthogonal correspondence with the points on a neighboring v-line if dz 
is expressed as a product of a function of c and a function of r,r. Then dgx can 
be taken of the form 

diiz =.fz(tl)/!f,(~) (B.15) 

for which (B.9) becomes 

la -- 
f*(r) x rnX” + f2(tl) ar f20xv = O [ 1 1 la 1 -- [ 1 

la [ 1 1 1 a 1 -- - 
flW at f&3 Yr 

-- - 
+ f&l) a fi(r) y7i = O- [ I 

These equations may be reduced to Laplace equations by the transformation 

(B.16) 

The t, rj system then will have dm= 1. Then, as noted in Warsi & Thompson 
[3 131, a 2-D orthogonal coordinate system (& a) can be generated from a conformal 
system (f, q) by the coordinate strectching transformation given by (B. 17). The 
resulting system will have dx given by (B. 15). The application of 1-D coor- 
dinate stretching transformations, i.e., Eq. (B.17), to conformal system thus will 
preserve the orthogonality, but not the conformality, of the system. 

3. Quasiconformal Systems 

Quasiconformal mappings satisfy the Beltrami system of first-order 2-D partial 
differential equations; 

--TX = PC? Y > rx + Y(X, Y 1 ry 3 II,=a(x,r)5;+P(x,y)r,, (B.18) 

where the functions a, p, y are related by ay -p’ = 1, making the system elliptic. 
With these relations, the metrics g,, and g,, are related by 

g,,+&*=@+Ywi (B. 19) 

Equation (B. 18) may be combined to yield 

at;,, + K, + r&y + (a, + P,) tx + Gc, + Yy) ry = 0 (B.20) 
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and a similar equation with < replaced by V. Equation (B.18) must be satisfied on the 
boundary. Equation (B.20) is the Euler equation for minimization of the functional 

(B.21) 

Note that for a = y = 1, /3 = 0, the system (B.20) reduces to the Laplace system, and 
the Beltrami equations (B.18) become the Cauchy-Riemann equations (B.lO). The 
quasiconformal mapping is not, in general, orthogonal. Quasiconformal systems are 
included in Section G. 

4. General Systems from Elliptic Equations 

A large class of quasilinear elliptic generating systems can be defined by taking the 
Laplacians of the curvilinear coordinates to be equal to constructed functions of the 
curvilinear coordinates, their first derivatives, and the Cartesian coordinates. Thus, 
with 

where the Pi are the above-functions, (B.3) becomes 

(B.22) 

(B.23) 

(Conformal systems are special cases of this class.) This general class of elliptic 
generating systems is treated in Section G. The function Pi may be chosen to control 
the spacing of the coordinate lines as discussed in Section K. 

As shown in Warsi and Thompson [3 121, if x and u in the system 

v2x=o, v20=o (B.24) 

are transformed by the 1-D stretching functions 

x=fl(4 +x09 

the resulting system is 

v2r = (gzz/g> p(r)9 

where 

0 =.f2@#7) + 00 (B.25) 

V2rl = (g,,/g) Q(r), (B.26) 

PC3 = -f I’1.f ;, Q(s)=-G/f; (B.27) 

and the metrics are defined in terms of r and q. 
Thus, a coordinate system generated from the system (B.26) with 1-D control 

functions, P(r) and Q(q), can also be generated by applying the stretching transfor- 
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mation (B.25) to the coordinate system generated from Laplace equations with the 
same boundary values. The stretching functions would be given in terms of the 
control functions by 

Conversely, a coordinate system produced by applying the 1-D stretching given by 
(B.28) to a system generated by Laplace equations is the same as the solution of the 
generating system (B.26) with the control functions given in terms of the stretching 
functions by (B.27). If 1-D control functions are used in the generating system 
(B.22), it is thus not necessary to solve again the elliptic system when the control 
functions are changed. The approach used by Sorenson and Steger [252] is of this 
form. This topic is discussed further in Sections K and L. 

C. SYSTEMS FROM ANALYTICAL CONFORMAL TRANSFORMATIONS 

Conformal mappings satisfy Laplace equations with boundary conditions from the 
Cauchy-Riemann conditions, i.e., (B.8) and (B.lO) with dx= 1. Such 
mappings have been built up from complex transformations, from superposition of 
harmonic functions, and from several different numerical approaches. As noted in 
Section B, a system generated by applying 1-D coordinate stretching transformations 
(B.17) to a conformal system will be orthogonal but no longer conformal. Such 
systems are, however, included in the present section. Also as noted in Section B, 
orthogonal systems having dx= const # 1 are not conformal, but do 
correspond to a conformal system through a simple linear transformation of either of 
the curvilinear coordinates to incorporate the constant value of \/m. Discussion 
of the direct numerical generation of such systems is included in the next section. 

Although conformal transformation exists in 3-D (cf. Eiseman [76]), the 
framework of complex analysis is only available in 2-D for the generation of such 
transformations. Therefore the existence of conformal transformation in 3-D is only 
of academic interest. 

1. Elementary Complex Transformations 

Conformal mappings using elementary transformation functions in the complex 
plane have long been used to generate coordinate systems about special boundary 
curves that are contours of the mapping. (An extensive list of such functions may be 
found in Kober [ 1581). The Joukowski and Karman-Trefftz airfoils are examples of 
boundaries that can be treated in this manner, as in Mehta and Lavan [ 1961, Wu and 
Sampath [325], and Wu et al. [323]. In the latter work, a 1-D coordinate stretching 
transformation, as in (B.17), is applied to the conformal system. Another example of 
this type of elementary conformal mapping is given in Napolitano et al. [206], in 
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which a single corner is mapped to a straight boundary. Again, 1-D stretching was 
applied, in each direction in this case. Ghia et al. [97] and O’Brien [337] used 
elementary transformations for channels with smooth constrictions. 

2. Series Transformations 

In general, conformal mapping does not allow an arbitrary specification of 
boundary points. Wu and Gulcat [324], however, have given a procedure for deter- 
mining a conformal mapping that allows the points on a general closed boundary 
contour to be specified arbitrarily. This specification contained only finitely many 
points and as a consequence was limited by analytic continuation properties only 
with the saturation of boundary points. The finite and arbitrarily spaced points on the 
boundary contour are mapped to equally spaced points on the unit circle by a finite 
Laurent series, the coefftcients of which are determined by summation over the 
boundary point distribution. Unfortunately, the resulting coordinate system can have 
singularities at finite distances from the boundary so that only a portion of the coor- 
dinate system can actually be used. An O-type regular system of sufficient size can be 
obtained by adjusting the point distribution, however. 

Extremal properties of conformal mappings lead to expressions for the mapping 
function in terms of series of orthonormal polynomials. This formulation was used by 
Rabinowitz [221]. Good results were obtained until the number of orthogonal 
polynomials to be constructed was so large that round-off problems were encountered 
in the Gram-Schmidt orthonormalization algorithm. 

Recently, this technique has been improved by Papamichael and Kokkinos [338]. 
The polynomial basis for representing the mapping function was augmented by 
singular functions which are used to increase the accuracy in approximating the 
singularities of the mapping function. They also considered the direct solution of the 
extremal problem using this augmented set of functions and found that both mapping 
procedures worked equally well. 

A Fourier series method for the conformal mapping of simply connected regions 
onto rectangular regions was applied by Wanstrath et al. [306]. The physical region 
was restricted to be a region D whose boundary consists of two vertical line segments 
x = 0 and x = 1 and curves r, and r, connecting the upper and lower endpoints of 
the line segments. The region D is to be mapped onto a rectangular region R given by 
0 < < < 1, -p < q < p, with the parameter /I to be determined. It is assumed that the 
mapping from the l+ iv = c-plane to the x + iy = z-plane can be approximated by a 
Fourier series. 

z = PO + Q,,C + i [P, cos(nn~/~) + Q, sin(n7tc/1)]. (C-1) 
lI=l 

If the mapping is extended to be symmetric about x = 0, and it is noted that x = A is 
the image of r = & then (C. 1) reduces to two real equations for x and y. As is charac- 
teristic of the conformal mapping procedures based on series expansions, the 
coefficients are adjusted in an iteration scheme until the image of R is as close to D 
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as desired. The lines < = 0 and < = 1 are invariant under the mapping, and hence the 
coefficients, and also the value of p, must be chosen so as to minimize the distance 
between the curves r, and r, and the images of the curves q = p and r = -p under 
the mapping given by (C.l). 

A large number of examples indicate that the method of Wanstrath et al. works 
well provided the curves ri and r, are sufficiently smooth. Auxiliary coordinate 
stretching transformations were also employed to enhance resolution near a specified 
boundary or interior coordinate line without violating the orthogonal requirement. 
Although this method was applied to construct transformations of simply connected 
regions, it could clearly be used for mapping doubly connected regions as well, since 
a doubly connected region could be mapped conformally onto D using the complex 
logarithm function. 

A related procedure was given by Gnoffo [ 1061 and used in Gnoffo [ 104, 1051. 
Here the Cartesian coordinates are written as finite series expansions in terms of the 
curvilinear coordinates as 

x=(-Bsinhq+Ccoshq)cosr- 5 A,e”“cos(nr) 
II=2 

y=(Bcoshq-Csinhq)sin<+ 2 A,,e”” sin@). Pa 
n=2 

Lines of constant v become circles as v approaches negative infinity. This system is 
also rotated about the x-axis to produce an axisymmetric coordinate system. Rather 
than determining the coefficients to fit the system to a specified body shape the 
approach taken is to obtain families of body shapes by assigning nonzero values to 
only a small number of the coefficients. In this manner, families of ellipses and N- 
sided shapes with rounded corners can be produced. Approximations to spherically 
capped cones with a hemispherical afterbody can be produced as well. 

The conformal mapping of arbitrary regions of connectivity greater than two has 
received very little attention from numerical analysts, even though the theory is well 
developed. A recent application of the theory to the practical problem of constructing 
the conformal mapping appeared in Ellacott [82]. The physical region D is taken as 
having outer boundary component r, and interior boundary components r2,..., r,,. 
The images of r1 and one of the interior boundary components, say TZ, are circles 
with radii pi and p2 in the c-plane. The images of the other boundary components are 
circular arcs with radii pi, where p2 < pi < pl. The canonical region is thus an 
annular region with circular slits. A polar coordinate system would naturally fit this 
region. In comparison with other well-established methods of numerical conformal 
mapping, the work of Ellacott is at the developmental stage. The computational 
procedure requires the selection of an analytic function g(z) which, for best results, 
must roughly approximate the mapping function. Also required is an approximation 
of log ] g(z)] by a basis of harmonic functions which must increase in size with the 
order of the connectivity. The approximation of the conformal mapping is an analytic 
function, and images of the ri are approximately circles or circular arcs. 
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3. Schwarz-Christoflel Transformation 

The Schwarz-Christoffel transformation [88] is a well-known formula for 
constructing conformal mappings of regions with polygonal boundaries onto the 
upper half plane. The mapping from the upper half of the c-plane to the polygonal 
region in the z-plane with vertices zl, z*,..., z, is given by the formula 

z=A+B (C.3) 

where ci are the images of the vertices zi, and the a, are related to the interior angles 
of the polygon 13~ by 

ai = n - 0,. (C.4) 

A major difficulty in constructing the conformal mapping lies in the determination of 
the parameters A, B, cl, & ,..., n [ . Since a conformal mapping has three real 
parameters, some of these values can be assigned. 

Among the early works employing the Schwarz-Christoffel transformation for 
numerically mapping complex channels is the study by Wassmuth [3 151. The flow 
between two fixed boundaries with an arbitrary finite number n of angle changes in 
both boundaries was mapped to the flow in the upper half of the transformed plane. 
The entrance and exit boundaries were treated as vertices at infinity, with a source at 
the entrance and a sink at the exit. The source and sink were of equal and opposite 
strength related to the volume rate of flow between the boundaries. For a 
configuration with n vertices, the Schwarz-Christoffel transformation was written in 
the derivative form as 

(C.5) 

which corresponds to (C.3) with A = 0 and B related to the channel height at 
upstream infinity. 

Boundaries with curved corners were also considered. In these configurations, the 
boundary turns continuously through the angle ai, forming a curve of finite radius of 
curvature at the turn. The corresponding term in the transformation is then 

(Ci - 4 + ni[ (ri - 0’ - bt])-ai/n, 
where (& - bi) and (& + bi) denote the positions, in the transform plane, of the end 
points of the physical boundary curve. The value of Li is assigned and allows for a 
change in the shape of the boundary curve. Decreasing Izi tends to increase the radius 
of curvature at the endpoints of the curve and decrease it in the middle, thus giving 
the effect of a sharper bend. In fact, with li = 0, the curved corner degenerates to a 
sharp corner. 

The complex integrals involved in the transformation were evaluated using the 
trapezoidal or the Simpson rule of integration. An estimate of the complex truncation 
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error was also made and the integration path near the singularities representing the 
corners is discussed. The &‘s are determined by an iterative procedure that converges 
very rapidly for flows over a single boundary (external flows) but experiences slow 
convergence for flows bounded by two boundaries (internal flows). This is because 
the quantity B in the transformation has a fixed value in internal flows but some flex- 
ibility in the case of external flows. 

In the class of problems treated by Squire [254] it was assumed that z, = [, = 0, 
which implies A = 0, and the scale factor B was taken to be unity. The remaining 
parameters &, & ,..., c, must be determined. Squire used a very simple iterative 
procedure for computing these & points on the real axis. At each step the & are 
adjusted until the distances between the vertices of the polygon computed from (C.3) 
are correct to the accuracy desired. In computing the parameters, and also in the 
computation of the image of a point [ near a &, the integration of a singular integral 
is required. This is handled by splitting the integral into two parts, one of which can 
be integrated directly, and another which has an integrand with a removable 
singularity. 

A few numerical examples were given by Squire, but the polygonal region was 
always a half plane with rectangular cavities or protrusions. It was noted in the 
concluding remarks that this method would be more difficult to use on other regions 
like an infinite strip with two boundary components or the exterior of a polygon. In 
these cases the scaling factor B can no longer be taken as 1 but must be determined 
along with the other parameters. There are no results dealing with the efficiency or 
accuracy of the scheme. 

A more extensive and detailed study of the construction of conformal mappings 
using the Schwarz-Christoffel formula has been presented by Trefethen [293]. To 
avoid the possibility of dealing with real numbers of large magnitude, the polygon is 
mapped to the unit circle rather than to the real axis. The mapping of the polygonal 
region onto the unit disk was obtained from a formula similar to (C.3), with each 
factor in the integrand, ci - c, replaced by 1 -cl&. In this case the ci denote points 
on the unit circle, and the parameter A is the image of the origin. The transformation 
is normalized by choosing an arbitrary interior point of the polygonal region as the 
value for A and setting c, = 1 to limit the rotational freedom. The unknown 
parameters are therefore the factor B and the points on the unit circle cl, & ,..., [,,- 1. 

Trefethen chose a different method for computing the singular integrals. The 
complete integral is computed numerically using an adaptive scheme with more mesh 
points near the singularities of the integrand. The parameters B, cl ,..., [, _ , are deter- 
mined by solving a nonlinear system of n - 1 equations for n - 1 real variables, 
namely the arguments of the points cl, &,..., c,-i on the unit circle. An iteration 
procedure based on Newton’s method is used. Once the parameters are computed, the 
image of any point of the unit disk can be determined by the Schwarz-Christoffel 
formula. An orthogonal coordindate system can be constructed from a polar coor- 
dinate system in the disk. Trefethen also considered the problem of constructing the 
inverse mapping from the polygonal region onto the disk. 

This work on the computation of the Schwarz-Christoffel transformation can be 

581/47/l-2 
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described very well as a state-of-the-art report. The numerical schemes and software 
used here generally are the most accurate and efftcient available for solving each 
particular part of the problem. Conformal mappings are constructed for a wide range 
of bounded and unbounded polygonal regions. Several applications to the solution of 
Laplace and Poisson equations are also included. 

The methods of Squire and Trefethen used numerical integration to compute the 
transformation. Series expansions for z can also be derived from the Schwarz- 
Christoffel formula. This was done by Skulsky [245] for the mapping of the exterior 
of a polygonal region onto the exterior of a circular region. Only polygonal regions 
with symmetry about the real axis were considered. The normalization A = 0, B = 1 
was assumed. An iterative procedure is used to determine the correct position of the 
cl, which must be related to the coefficients of the series expansion for z. Of course in 
the computations only a finite number of terms of the series are used. It was reported 
that aerodynamic characteristics computed for flow about the polygonal body agreed 
well with experimental values even though tolerances in the computation of the 
polygonal sides on the order of lop4 were allowed. This compares with accuracy to 
the order of lo-’ or less demanded by Trefethen. No doubt, improvements in 
computers since Skulsky’s work, published in 1966, would allow for more accuracy 
in the computation of the conformal mapping. 

Davis [62] used the formulation of Woods [322] for the Schwarz-Christoffel 
transformation to arbitrary-curved boundaries with possible slope discontinuities as 
follows: The Schwarz-Christoffel transformation (C.3) can be written 

dz 
- = B exp 
4 

i (-ai/X) log([- &) . 
i=l 1 

For a curved contour, the summation becomes an integral, so that 

dz 

z=Bexp 
loid4 - b) dP 7 1 

(C.6) 

cc.71 

where /I is the angle between the tangent to the contour and the x axis. On straight 
sections d/l= 0, while at slope discontinuities p is a step function such that the 
integral in the neighborhood of the discontinuity reduces to the corresponding term 
from the summation in the original form. Although p can be determined as a function 
of z for all points on the physical contour, the relationship between the points on the 
physical contour and the corresponding points on the real axis of the transformed 
plane is a part of the solution to be determined. Therefore the above equation is a 
differential-integral equation, since b(J) must be determined as part of the solution. 
The principal portion of the paper is devoted to the numerical solution procedure for 
this equation. The coordinate systems produced are of the C-type for regions exterior 
to bodies. The present application was to symmetric bodies only, but an extension to 
general bodies is possible. An extension to arbitrarily curved channels is also given, 
in which, again, summations in the Schwarz-Christoffel transformation are replaced 
by integrals, and a differential-integral equation is solved. 
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The Schwarz-Christoffel transformation was also used by Anderson [7] to 
generate streamline-orthogonal coordinates for studying flow through arbitrary ducts. 
Because of the circular cross-section ducts considered, the defining equation (C.5) for 
the derivative form of the Schwarz-Christoffel transformation was modified to the 
form 

g = $ ,p (l- &)-‘n. 
1 

(C-8) 

A third-order Runge-Kutta method was used for the integration, together with 
Newton’s method for minimizing the error involved in iteratively determining the <i)s. 

In a recent application of the Schwarz-Christoffel transformation to internal flow 
configurations, Sridhar and Davis [255] extended the procedure in Davis [62] for 
external flow applications. The procedure differs from the early analysis of Wassmuth 
[3 151 in several significant ways. The geometry in the transform plane is a straight- 
walled channel rather than a plane wall, so that the channel flow configuration 
appears as an external-flow configuration even in the transform plane. This is 
achieved by recognizing that the arbitrary channel as well as the straight channel can 
be transformed to a straight line using appropriate Schwarz-Christoffel transfor- 
mations. Hence, the two channels can also be related directly. Accordingly, an 
arbitrary channel composed of straight-line segments with M corners along its lower 
wall and N corners along its upper wall in the z-plane is related to a straight channel 
of height h in the c-plane by the transformation 

$=Bexp [(#+a)&] 

X fi sinh G ([-- cm)om’n 
I 

fi cash $- ([ - &Jan’n 1 cc.91 
m=1 It=1 

Here, B is a constant, 4 and 6 are the angles between the channel boundaries near its 
exit and inlet, respectively, and the a’s and Cs have the same significance as discussed 
for (C.5). Integration around sharp corners is performed analytically. Curved corners 
are treated, not by simply generalizing the integrand, as was done by Wassmuth 
[315], but by representing the n-term product in Eq. (C.9) as the integral of the 
logarithm of that integrand, with the turning angles a replaced by angle elements da. 
Thus, for each pair of curved elements along the upper and lower wall, this equation 
is expressed in the form 

$=Kexp [(#+a)-&-] 



18 THOMPSON, WARSI, AND MASTIN 

The procedure also takes advantage of the boundary-integral nature of the 
Schwarz-Christoffel transformation in order to provide the desired coordinate curves 
in the interior even at the expense of sacrificing the orthogonality of the coordinates 
in the transform plane. 

4. Integral Equation Methods 

The conformal mapping procedures discussed above have been aimed primarily at 
regions of a particular type. For regions with arbitrary curved boundaries, the 
integral equation methods have become very popular. This is especially true since the 
significant increase in accuracy reported by Hayes et al. [ 1251 in the use of the 
integral equation method of Symm [269]. 

A brief outline of the method of Symm based on solving an integral equation of the 
first kind follows: Suppose the simply connected region D with boundary 80 is to be 
mapped onto the unit disk with the origin as the image of a point zO in D. If the 
Dirichlet problem 

v2q=o in D, (C.11) 

q=-log]z-z,] on cTD, (C.12) 

can be solved and the harmonic conjugate h of q can be found, then the desired 
conformal mapping can be written explicitly as 

6 = exp[log(z - z,,) + q(z) + ih(z)]. (C.13) 

Thus the mapping problem reduces to the problem of solving the Dirichlet problem, 
(C.ll) and (C.12), which, as is well known for potential theory, can be done by 
solving an integral equation. The solution proceeds in two steps. First a density a(z) 
defined on 3D is determined as the solution of the integral equation of the first kind 

1 
log Iz - WI u(w) ds = -log Iz -zJ, z in aD, (C.14) 

l9D 

where s is the arc length parameter on aD. Then the function q(z) is computed from 
the values of c(z) on 80 by the formula 

q(z) = ,fD a(w) log ]z - w  1 ds. (C.15) 

It is also obvious that the harmonic conjugate of q is 

h(z) = IaD u(w) arg(z - w) ds. (C.16) 

Since h(z) is unique except for an additive constant, the conformal mapping in (C.13) 
is unique up to a rotational factor. 
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The original method of Symm for solving the integral equation (C.14) was very 
straightforward. The interval of integration (i.e., the length of a0) is partitioned into 
n subintervals on which it is assumed that u is constant. On each of these subin- 
tervals the integral is approximated using Simpson’s Rule with one interior node. The 
resulting system of IZ linear equations is solved to determine the step function which 
approximates a(z). The same numerical integration procedure is used in the 
computation of q(z) and h(z). The main improvement of Hayes et al. was in the use 
of quadratic polynomials in the approximation of a(z) and a more accurate numerical 
integration scheme for the subintervals. Suggestions were also given on choosing 
partitions of 80 for improving accuracy. With over 200 subintervals, errors on the 
order of lop4 or less were reported. Concluding remarks by Hayes et al. give some 
idea of the total computer time requirements. For example, with 200 points 
partitioning 80 the image of 200 points of D could be computed in approximately 6 
seconds on a CDC 7600. 

Other integral equations have been derived for the construction of conformal 
mappings. Hayes et al. [126] compared the above method of Symm with a method 
based on an integral equation of the second kind and concluded that the method of 
Symm was generally superior in handling highly distorted mappings. The method of 
Symm can also be used for mapping doubly connected regions onto annular regions 
and for mapping the exterior of contours onto the exterior of the unit circle, cf. Symm 
[268,270]. 

Hough and Papamichael [341] have also considered higher order approximations 
of u(z). They used spline functions of various degrees and special functions to model 
corner singularities of a(z). In this paper, only polygonal regions were mapped and 
all integrations were exact. It was noted that special integration procedures would be 
needed for the singular functions when working with curved boundaries requiring 
numerical integration. 

5. Combinations and Other Transformations 

There are numerous older conformal mapping methods which will not be discussed 
here. Gaier [88] treats many of the classical methods. Some recent numerical results 
on the use of integral equations for the conformal mapping of regions with highly 
distorted boundaries appear in Menikoff and Zemach [ 1971. Unlike Symm, these 
authors derived integral equations with nonsingular kernals which led to the 
numerical solution of systems of nonlinear equations. The superiority of the method 
of Menikoff and Zemach in mapping regions with large distortions was demonstrated 
by Meiron el al. [339]. This method proved to be much better than Fourier series 
methods in mapping regions encountered in the breaking of surface waves. In [339], 
Meiron et al. also included a time-dependent mapping equation which was used to 
march the mapping function to follow a time-dependent boundary. Good results were 
reported in using this conformal mapping procedure for the numerical simulation of 
Rayleigh-Taylor instability. Another new approach to the construction of conformal 
mappings of arbitrarily shaped simply connected regions onto various canonical 
regions has been proposed by Opfer [2 131. An extremal principle is developed which 
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leads to the solution of a linear programming problem. The only numerical example 
given is the mapping of the unit disk onto an infinite strip. 

The generation of orthogonal grids by conformal mappings for arbitrarily shaped 
simply connected regions was demonstrated by Bartield [ 161, who used both an 
integral equation and a Schwarz-Christoffel transformation. First an integral 
equation method was used to transform the arbitrary region onto the unit disk. Next 
the unit disk was transformed onto the interior of a rectangular polygon by a 
Schwarz-Christoffel transformation. In order to determine the mesh point coor- 
dinates, the transformation from the polygonal region R to the original region D is 
needed. This was accomplished by using the boundary correspondence for the 
conformal mapping and solving a pair of Laplace’s equations on the polygonal region 
by finite differences. 

Barfield also dealt with the problem of matching coordinate lines at the boundary 
when D is partitioned and separate orthogonal coordinate systems are constructed in 
the disjoint subregions of D. This would permit the original problem of mapping onto 
a possibly complex polygonal region to be reduced to the problem of mapping 
subregions of D onto rectangular regions. Although the number of conformal 
mappings to be constructed would increase, each problem would be smaller and 
Laplace’s equation on a rectangle can be solved by fast direct methods. The process 
of matching the coordinate lines begins with an orthogonal mesh on each subregion. 
Using the boundary points of the coordinate lines on the first subregion, new coor- 
dinate lines on the second subregion are constructed by interpolation. This procedure 
is continued until a coordinate system with no discontinuous coordinate lines is 
constructed for the entire physical region. 

The same interpolation scheme can be used if a specific distribution of mesh points 
is required along a particular part of the physical boundary. Barfield used a third- 
order interpolation at the interior points to retain orthogonality of the new coordinate 
lines. In the construction of a sample 21 x 15 coordinate system, about 16 seconds of 
CPU time on a CDC 6600 was required. Most of the time was needed to determine 
the boundary correspondence where 137 intervals were used in the solution of the 
integral equation. 

Conformal mapping of a cascade is given in Ives and Liutermoza [ 1431 as a 
sequence of four transformations. The region exterior to the cascade is first 
transformed to the interior of a near circle. This step requires a Newton-Raphson 
iteration to place the centroid of the near circle at the origin. The near circle is then 
mapped to a unit circle by classical Fourier analysis (Theodorsen and Garrick 12771 
and Garrick [92]), using fast Fourier transforms. The third transformation moves 
upstream and downstream infinity to symmetrically placed points on the real axis. 
Finally, the region interior to the unit circle is mapped onto a rectangular region. The 
resulting coordinate system is of the O-type. This type of system was apparently used 
in Ives and Liutermoza [ 1441. 

Conformal transformations for regions containing two airfoils have been given by 
Ives [ 1421, and applied by Grossman and Melnik [ 1161 with some procedural 
improvements. Here five successive conformal transformations are used. First the 
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region exterior to the two airfoils is mapped to the interior of a near circle by a 
Karman-Trefftz transformation that maps one of the airfoils to the near circle. The 
second transformation maps the near circle to a unit circle by the Theodorsen 
procedure using fast Fourier transforms to determine the coefficients of the finite 
series. The third step transforms the other airfoil to a near circle, while keeping the 
first airfoil circle exact but no longer of unit radius. The fourth transformation then 
moves the centroid of this near circle to the center of the existing exact circle by a 
bilinear transformation. Finally, the near circle is mapped to an exact circle 
concentric with the other circle (which is maintained exact) by the Theodorsen 
procedure. The result is an annular region in the complex plane bounded by the 
concentric circles corresponding to the airfoils, with infinity transformed to a single 
point between the two circle. One-dimensional coordinate stretchings are applied to 
this final conformal system, both circumferentially and radially, to redistribute the 
coordinate lines as desired. The final system thus is orthogonal but not conformal. 

Ives also has given a procedure by which a collection of any number of bodies can 
be mapped conformly into an equal number of near circles. The calculation involves 
a complex Newton-Raphson iteration to simultaneously map all the bodies. A 
different technique to accomplish the same purpose has been given by Halsey [ 119, 
1201, in which the bodies are successively mapped to exact circles by an iterative 
procedure which is continued until the departure of any body from an exact circle is 
within satisfactory limits. These procedures do not directly generate a suitable coor- 
dinate system for the field, but can only serve as an intermediate step to replace the 
physical body shapes with near circles. A procedure for multiply connected regions 
with arbitrarily shaped boundaries has also been mentioned in Harrington [ 1221 but 
no details are given. 

In Ives and Menor [ 1451 a sequence of nine conformal transformations followed 
by a stretching transformation is used to map the exterior of an inlet centerbody 
configuration to the interior of a canonical unit circle. In this transformation the inlet 
surface is mapped to an upper half circle and the centerline is mapped onto the real 
axis, analytically keeping the centerline straight. The mapping of a near circle to a 
circle that is involved is done by the derivative form of this transformation (cf. Bauer 
et al. [ 171) rather. than the direct form (Theodorsen and Garrick [277]). The 
derivative form has been found to be much more stable and versatile without 
significant sacrifice in accuracy or computer time. These two forms differ in that the 
direct form involves the determination of the coefficients Cj of 

N 

z=zexp C C$ ( ) j=O 

to effect the transformation, while the derivative form is based on determination of 
the coefficients of 
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followed by integration to determine the point correspondence. The direct form 
requires underrelaxation in general and cannot treat near circles that are not star 
shaped, while the derivative form does not suffer from either of these problems. A 
correction transformation is applied to the transformation from the near circle to the 
circle since the use of a finite series will not place the image of infinity precisely on a 
unit circle. This correction obviates the need for a Taylor series patching to avoid 
problems resulting from the magnification of error near these images. The 2-D coor- 
dinate system was rotated about the centerline to produce an axisymmetric system. 
This generation procedure was used in Ni [207]. 

Roberts [232] treated the problem of generating orthogonal coordinates for multi- 
element airfoils by constructing multiple coordinate systems. At each gap between 
airfoils a local coordinate system was generated by constructing a conformal 
mapping of a small region containing the gap onto a rectangle. 

A 3-D coordinate system for a wing-body configuration was generated in Baker 
and Forsey [ 131 by a sequence of conformal transformations in 2-D planes. 
Requiring that the body be of circular cross section (but not necessarily of constant 
radius), the body cross sections in each plane normal to the body axis are mapped to 
slits in the plane of symmetry of the configuration. With the wing planform extended 
from the wing tip to infinity as a branch cut, a spanwise transformation is applied to 
map this infinity to q = 1 and to define a series of sections through the wing and 
branch cut, packing these sections towards the root, tip, and any discontinuities in the 
leading and trailing edges. Each of these sections then is mapped to a circle. A final 
transformation is applied to the radial coordinate in these circles to compensate for 
effects of wing sweep and taper near the wing tip. Several other applications of 
conformal mapping to particular physical problems are noted in Laura [ 1671. 

D. SYSTEMS FROM NUMERICAL CONFORMAL TRANSFORMATIONS 

Orthogonal coordinate systems in 2-D must satisfy (B.8) on the field and (B-10) on 
the boundary. The necessity of satisfying (B.lO) on the boundary places an integral 
constraint on the range of r (or r,r), since integration of these equations along an 
entire coordinate line must yield the corresponding change in the Cartesian coor- 
dinates between the end points of this line on the physical field. This problem can be 
approached either with dx= 1 and the range of r (or q) to be determined, or 
with dx= a and the value of a to be determined. The first approach leads to a 
conformal system, while the second leads to an orthogonal system which can be 
transformed to a conformal system by a 1-D coordinate stretching transformation of 
the form of (B.17). Both approaches are included in the present section. 

1. Specified Coordinate Ranges 

For the generation of a Cartesian-type coordinate system, what is needed is a 
conformal mapping of a rectangular region onto the physical region. In contrast to 
Barfield’s method, discussed in the preceding section, which used the unit disk as an 
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intermediate domain, there has been some progress on the problem of mapping the 
physical region directly onto a rectangular region. An early advance in this direction 
came from Godunov and Prokopov [107]. 

An arbitrary simply connected region D bounded by a closed contour can be 
conformally mapped onto a rectangular region R defined by 0 < [< ti, 0 < q < 6. If 
the image of the vertices of R are specified, the ratio a = ti/$ is a conformal invariant 
called the module of the region (cf. Gaier [89]). 

Under the change of variables c= tit, ?i = &, the composite mapping transforms D 
onto the interior of the unit square which will be denoted by S. The conformal 
mapping can then be constructed if the parameter a and the mapping from S onto D 
can be found. 

The functions x(& r,r) and JJ(<, q) will satisfy (B.14), and it follows that the problem 
of finding the parameter a and the functions x(& q) and ~(6, q) can be formulated as 
a variational problem, minimizing the integral 

(D.1) 

among all positive a and sufficiently smooth functions for which the boundary 
correspondence is one-to-one. The method of Godunov and Prokopov [ 1071 is based 
on the numerical solution of this variational problem. A disadvantage of their method 
is that grid points on the boundary of the physical region D are fixed, and the 
boundary values on the square S are determined in the solution process. The mesh in 
D is the image of line segments connecting corresponding boundary points on S. 
Since these line segments are not necessarily orthogonal, the resulting coordinate 
system for D will not generally be orthogonal. In some cases it may be possible to 
use an interpolation procedure to construct an orthogonal mesh; however, this might 
necessitate a judicious choice of boundary points on the physical region so that mesh 
points in the square region would be distributed where needed. As a conformal 
mapping technique, this method is very versatile and accurate. The error in the 
computed value of a was typically less than one percent, while the coordinate values 
of the mesh points were accurate to three significant digits at most locations. 

Chakravarthy and Anderson [34] have developed a conformal mapping scheme 
based on the finite difference solution of the Cauchy-Riemann equations in polar 
coordinates. They considered the problem of conformally mapping the unit disk onto 
the interior of a closed contour with the image of the origin given as (x0, y,). The 
Cauchy-Riemann equations are differenced on a staggered grid. One of the functions 
is defined at the vertices of the mesh quadrilateral, while the other is defined at an 
interior point of each quadrilateral. The interior points thus define a secondary mesh. 
Once a set of values for y on one grid are given, the corresponding values of x on the 
other grid can be computed from the difference equations and the value x,. This fact 
forms the basis of the numerical method. Suppose the boundary curve is given 
parametrically by x = x(a), y = y(a). Let the mesh points on the boundary be denoted 
by 

(x(a,),y(a,)), i = 1, 2 ,..., II. 
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From the ~(a,) values and the value x0, the Cauchy-Riemann equations give rise to 
new values .-?((a*). The interior mesh points of y are determined by essentially solving 
Laplace’s equation, and the values of y are transferred to the secondary mesh by 
interpolation before 2 can be found. The problem then is to choose a set of parameter 
values ai, i = 1, 2 ,..., II which minimizes the residue Z(a) -x(a). This problem was 
solved by using either the conjugate gradient or a modified Newton’s method. Once 
the optimal set of ai values are determined, the values of x and y at all mesh points 
can be computed from the boundary values (x(ai), y(a,)) and the value (xO,yO). The 
mapping is unique up to a rotation which can be limited by fixing, say, a,,. 

The method of Chakravarthy and Anderson was quite efficient for coarse grids, 
using about 3 seconds of IBM 370/ 158 time for a 16 x 16 mesh. The method is 
penalized, however, by the number of matrix manipulations for larger problems. An 
appealing feature of this method is that it is based on the solution of the Cauchy- 
Riemann equations. As such, it is a good candidate for generalization. There is no 
inherent limit on the connectivity of the physical domain provided a unique 
conformal mapping is known to exist. It should be noted that Mizumoto et al. [ 2011, 
also used a staggered mesh for constructing conformal mappings. Unfortunately, they 
used a square mesh on the physical region which would be difficult to implement on 
irregular regions and poorly suited for orthogonal grid generation, and thus less 
applicable to general regions. 

Another method for mapping the unit disk onto the interior of a closed contour 
was recently proposed by Fornberg [85]. The conformal mapping is constructed by 
determining the appropriate coefficients in a Taylor series expansion on the unit disk. 
These coefficients are determined iteratively by moving the points on the boundary 
contour which are to correspond to uniformly distributed points on the circle. Test 
problems were solved using a CDC STAR-loo. In most cases several thousand 
boundary points could be included with only a few seconds of computer time used to 
approximate the Taylor series coefftcients. 

In the work of Pope [2 181, the system of difference equations which approximates 
(B.12) is solved iteratively, with the boundary values of x and y held fixed during 
each field sweep. After each field sweep, new boundary values for x or y are 
calculated by integrating the appropriate one of (B.14) along each boundary, the 
other of x of y being then determined from the equation of the boundary curve. For 
instance, x values on an q-line boundary could be calculated from (B.14) integrated 
as follows: 

xc3 = -e,) + + f Yq & (D.2) 
lo 

with y, evaluated from the latest field values. The values of y(r) on this boundary 
would then be found by substitution of the x values in the equation of the boundary 
curve. The value of a is then adjusted so that the integral of either of the (B.14) 
between corners gives the correct change in x or y. The field is then swept again for 
new values of x and y, and this entire process is repeated until convergence. A 1-D 
stretching redistribution was applied after convergence. 
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Mobley and Stewart [202] take 

l/izK = w(ttYf’(r) (D.3) 

with “a” constant, so that (B-7) becomes 

v2r = -wg,,w-“/.a v2v = -Wg22W/q’) (D.4) 

and (B. 11) becomes 

Yrl = W/f’) XI’ x, = -@f/f’) Y,. (D.5) 

The functions f and q are used to concentrate coordinate lines as desired. 
The iterative solution procedure is similar to that used by Pope, except that the 

boundary conditions from (D.5) are applied in the differential form at each point, 
rather than by integration along the boundary. Thus the field is swept one time for 
new values of x. Then new values of x at each boundary point are calculated from the 
appropriate one of (D.5). For example, on an q-line boundary, the x values would be 
calculated from a one-side difference expression for x, using the latest field values of 
x, with x, given by 

x, = -W/f’) Yr 9 (D.6) 

where y, is calculated using the latest boundary values of y. Then new boundary 
values of y at each boundary point are determined from the equation of the boundary 
curve. The field is then swept once for new values of y. Then new values of y at each 
boundary point are calculated from one of (D.5) in an analogous manner as 
described above for x. New x values are then determined from the equation of the 
boundary curve. The value of a is then updated as in Pope, and the entire process is 
repeated until convergence. Several forms of the functions f and q, used to control 
the line spacing, are given but no direction as to how a selection might be made is 
given. Essentially the same approach used by Mobley and Stewart was also used by 
Agarwal and Bower [3] and Yen and Lee [328]. 

Equation (D.4) was actually obtained in these works by transforming the 
independent variables in Laplace equations for x and y with 1-D transformations by 
f(r) and q(q), which, as noted in Section B, preserves orthogonality. In the present 
procedure, (D.4) would have to be solved again each time either of the control 
functions, f(r) and q(v), was changed. The equivalent procedure of solving (D.4), 
however, as in Pope, once for x and y and then transforming the independent 
variables by the 1-D stretching functions, f(r) and q(q), would not require another 
numerical field solution each time the functions were changed. 

2. Unspecl3ed Coordinate Ranges 

The method of Hung and Brown [ 1401 is of the same type as the above, but the 
iterative procedure is more cumbersome. Here the Laplace equations are used, so that 
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the range of { must be determined as part of the solution, and the physical region is 
assumed to have two sides parallel to the y-axis, these being the r-line boundaries, 
and one q-line boundary parallel to the x-axis. This latter boundary may be a 
symmetry boundary. The field is swept once for new x values from the Laplace 
equation for x. Then new values of x are calculated at each point on the q-line boun- 
daries by applying this equation on the boundary using one-sided differences for the r 
derivatives. New boundary values for y on the curved boundary are then determined 
from the equation of the boundary curve. New values of y on the straight r-line boun- 
daries are calculated by integrating y,, from the Cauchy-Riemann equations up the <- 
line boundaries using the latest field values of x in the one-sided difference expression 
for xl. These values of y are then normalized so that the total change over the entire 
side is correct. The field is then swept one time for new values of y from the Laplace 
equation for y. New values of x in the field, on the curved q-line boundaries, and on 
the right-hand t-line boundary are then calculated by integrating the Cauchy- 
Riemann condition along t-lines from the q-line boundaries on which y is constant. If 
the calculated value of x at any point on the right-hand c-line boundary, on which x 
should be constant, is greater (smaller) than the specified constant x-value, then the 
maximum < value is increased (decreased). This procedure was used in Brown and 
Hung [25]. 

This entire sequence of steps is iterated to convergence, after which the value of r 
at the right-hand end, at which the x value is constant, is determined for each q-line. 
These c-values are then averaged over all q-lines, and d{ is changed to fit this average 
value. A final set of x values in the field is then determined by converging the 
Laplace equation for x without further change in the x boundary values. 

In addition to the method being cumbersome, the application of the partial 
differential equation on the boundary is not strictly justified and is unnecessary as 
well, since the x boundary values are updated later by correctly integrating the 
Cauchy-Riemann conditions. There are results in complex analysis which state that 
for analytic curves, conformal mappings can be extended analytically to the 
boundary, which may explain why the use of the differential equation on the 
boundary works at all. 

In an earlier work, Thorn and Apelt [278] had iterated the Laplace equation for x 
to convergence using Neumann boundary conditions from the Caychy-Riemann 
conditions, together with the equation of the boundary curve, to determine the field of 
x values. The y values in the field were then calculated by integrating the Cauchy- 
Riemann conditions along coordinate lines. Hung and Brown point out that this 
procedure builds up errors in the solution. The method of Thorn and Apelt was 
applied by Lee and Fung [ 1681. The work of Allen [4] is another example of the use 
of the Laplace equations with the coordinate range to be determined in the course of 
the solution. 

Balasubramian and Orszag [ 141 used a numerical conformal mapping to generate 
a coordinate system for a channel with one wavy wall. A subsequent 1-D stretching 
was also applied to distribute the points across the channel. 
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3. Streamlines and Potential Functions 

Since conjugate harmonic functions are orthogonal, it is possible to adopt the 
streamlines and potential lines of a potential flow as an orthogonal boundary-fitted 
coordinate system as in Walitt and Liu [302], Anderson and Hankins [336], Walitt 
et al. [304], Meyder [198], Anderson [8], and Briley and McDonald [24]. All of 
these works are for simply connected regions, and all are 2-D, except the last two. In 
Anderson and Hankins, an axisymmetric configuration was produced by rotating a 
coordinate system for a 2-D duct about the duct axis, while in Briley and McDonald 
a 3-D duct was treated by stacking 2-D systems. Meyder solved for the stream 
function and potential on a Cartesian grid and then interpolated among points to get 
the contours for the coordinate lines. Chakravarthy [33] used the streamlines and 
potentials of an incompressible solution to generate a grid for a transonic nozzle flow. 

The electrostatic analog can be used in the same way, with the force and potential 
lines forming the coordinate system as in Adamczyk [2]. Numerically, this method is 
similar to Symm’s construction. Symm constructed the Green’s function, however, for 
the region using the logarithmic singularity rather than the more complex singularity 
of Adamczyk. The basic singularity from which the electrostatic field is constructed 
has a doubly infinite line of alternating charges separated by a finite distance. A 
distribution of these singularities is placed on the body contour, and the requirement 
that the body be at a uniform potential yields an integral equation for the singularity 
density on the contour. This integral equation is solved by a panel method using a 
constant density on each panel. From this solution the potential contours forming the 
periodic boundaries between bodies in a cascade are determined. The Cartesian coor- 
dinates of points in the field then are generated by solving the transformed Laplace 
equations using the boundary values of x and y found on the contour and on the 
periodic boundaries from the panel solution. Finally, a stretching transformation is 
applied to cluster points as desired. It is noted, as in Potter and Tuttle [2 191, that the 
stretching functions must be 1-D in order to maintain orthogonality. Examples of 0, 
C, and split type grids are given, but the latter two cases are made simply connected 
by artificial specification of points on the cut in the C-type and on the line fore and 
aft of the slit, resulting in line discontinuities on these lines, in the periodic cascade 
arrangement. A procedure for finding the proper point distribution on these artificial 
boundaries to give continuous lines and slopes is, however, given. 

Klevenhusen [ 1541 used the streamlines and potential lines of potential flow about 
multi-element airfoils as the coordinate system. The stream function v is calculated 
by a panel method using linear doublet distributions on straight line segments 
forming the airfoil contours, with a downstream slit with constant doublet 
distribution aft. Then the potential velocities 4, and #,, are calculated by solving the 
transformed Laplace equations in the d - y plane, where the airfoils become slits 
with boundary values from the panel solution. In the application of this coordinate 
system, transonic potential flow, derivatives in the w  direction, i.e., normal to the 
potential streamlines, were neglected so the only metric coefficients required involved 
only the derivatives 4, and 4,. This neglect of derivatives in one coordinate direction 
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makes the application highly specialized and, in fact, difficulties were encountered 
near the front stagnation points. This coordinate system is of the slit-type, of course, 
and line concentration was used near the airfoils and near the leading and trailing 
edges. The results show some roughness in the pressure distribution. 

E. ORTHOGONAL SYSTEMS 

In this section, procedures for generating orthogonal coordinate systems without 
recourse to conformal transformations are discussed. As noted above, 2-D orthogonal 
systems must satisfy (B-8) on the field and (B.lO) on the boundary. 

1. Construction by Orthogonal Trajectories 

Potter and Tuttle [ 2191 have given a procedure for generating an orthogonal 
system for a doubly connected region by replacing the r-lines of an arbitrary non- 
orthogonal system. This work shows that a unique orthogonal system in 2-D can be 
generated between pairs of q-lines if dgx is a product of a function of < and a 
function of q between these two q-lines. (It is noted in Section B, that this conclusion 
means that an orthogonal system can be generated from a conformal system by 1-D 
stretching transformation functions.) This fact then leads to the conclusion that a 
function, monotonic in {, exists as a solution of the Laplace equation between the 
pair of q-lines. This monotonicity and the fact that the <-range is the same on both q- 
lines, indicates a unique correspondence between this function and the values of r on 
the v-lines. Therefore, if the Laplace equation is solved with Neumann boundary 
conditions in the region between the two q-lines, the contours of the function 
extending from a given set of r-points on one v-line will intersect the other q-line at 
the locations corresponding to the same set of r-values. 

Proceeding outward from the boundary, the integral equations resulting from 
Green’s theorem applied to the Laplace equation are solved for the values of this 
function at the given set of points on the inner q-line and at the points of the original 
nonorthogonal grid on the other v-line. The locations of the points on the outer q-line 
having the same values of the function as at the points on the inner q-line are then 
determined by interpolation between the points of the nonorthogonal grid. This set of 
points then becomes the set of points on the outer n-line for the orthogonal system. 
This process is repeated for each successive q-line, including the outer boundary. 

This process requires, for each q-line, the inversion of a matrix of order equal to 
the number of <-points. It is possible for gz2, the arc length measure on <-lines, to be 
discontinuous across the q-lines, since the entire development is applied individually 
to the regions between each succeeding pair of q-lines. This discontinuity is controlled 
to a large extent, but not entirely, by the choice of the nonorthogonal solution, since 
the v-lines of this solution become those of the final solution. Therefore, the 
nonorthogonal solution should be generated in some way that will provide a suitably 
smooth system. 
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The computational requirements of this method would likely lie somewhere 
between the hyperbolic method of Starius [258], discussed below, and a numeral 
conformal mapping. At each level, the solution of the integral equation would require 
solving a system of linear equations. For sample solutions with an 8 x 32 grid, it was 
reported that 3 seconds of CPU on a CDC 6600 were used. The method could be 
easily adapted to construct meshes for simply connected regions. Instead of the 
periodicity condition along a branch cut, Dirichlet boundary conditions would be 
used. This coordinate generation scheme allows for considerable control over the 
distribution of mesh points in that the position of the q = const coordinate lines and 
the mesh points on one boundary component may be arbitrary. The (Y = const coor- 
dinate lines will not intersect because of the maximum principle for harmonic 
functions. 

The same idea of generating coordinate lines as orthogonal trajectories was 
successfully embodied in a numerical algorithm by Watford [316]. His mesh 
generation scheme begins with a nonorthogonal mesh having coordinate lines 
p = const and v = const. Suppose we keep one set of curves, say v = const, and we 
wish to construct orthogonal coordinate lines by replacing the ,B = const curves. This 
can be accomplished by constructing a transformation from the pv-plane onto the &- 
plane, where g = v and the r = const lines are orthogonal to the v = const lines in the 
physical xy-plane. From the differential relations 

dx=;dp +;dv, dy =$dp +$dv, 

it follows that along the v = const coordinates 

which implies that along the orthogonal coordinates we must have 

dy Wcl 
dx I=const = -?i%’ 

On the other hand, these same differential relations imply that 

(E.1) 

(E.2) 

(E-3) 

(-1 

whenever the equation r(.u, v) = const establishes a functional relation between the 
variables ,u and v in the pv-plane. Therefore along r = const we have 

(E.5) 
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or, solving for dp/dv, 

This ordinary differential equation can be used to construct an orthogonal mesh in 
much the same way as in Potter and Tuttle [219]. An initial set of grid points zlj on 
the curve r,, where v = v,, is given. The original transformation defining the 
nonorthogonal mesh is used in the solution of the differential equation (E.6) which 
gives rise to values of zZj on the next coordinate line r2. In general, the point Zi+ i,j is 
the point on ri+, such that @(zi+ ,,j), vi+ i) is on the solution curve of the differential 
equation which passes through @(z,), vi). Watford states that several numerical 
methods have been successfully used to solve (E.6). He also indicates how arc length 
parameters and other quantities needed in the transformed partial differential 
equation can be found as solutions of ordinary differential equations which can be 
solved simultaneously with (E.6). An analogous differential equation can be used to 
orthogonalize coordinates on a surface in space. 

For doubly connected regions the solution of (E.6) would result in an orthogonal 
mesh for a rather general class of v = const curves separating the boundary 
components. For simply connected regions, however, the v = const curves must be 
orthogonal to the ,U = const boundary segments or else the orthogonal trajectories 
may leave the physical region. This would be needed for any method based on the 
construction of orthogonal trajectories. Therefore, for doubly connected regions either 
a simple linear interpolation scheme or bilinear blending functions can be used to set 
up the initial coordinate system. For simply connected regions a higher order scheme 
using Hermite interpolation polynomials is recommended. 

Several examples of orthogonal meshes generated by solving (E.6) have been given 
by Watford. He also presents an excellent review on the use of interpolating 
polynomials for grid generation and the use of splines for the parametric represen- 
tation of boundary contours. Although no indication is given on the efficiency of the 
method, it is likely to be faster than the similar scheme of Potter and Tuttle, since the 
solution of a rather large system of linear equations is replaced by the solution of an 
ordinary differential equation. 

Relation (E.6) was also used by Davies [61], but with the left side replaced by 
(aflav)/(aJ/+), where f is defined to be constant along the orthogonal trajectories. 
The solution is performed progressively from one v-coordinate line ri to the next ri+, 
as in the above methods. On each successive v-line, the function f is assigned values 
equal to p at each point Zi + , ,j : f (Zi + ,, j, vi + J = p(Zi + i +). Values of f at the points 
Z, on the previous v-line are then determined by solving (E.6) with the left side 
modified as given above. The points of intersection on the ri+ i line of the lines of 
constant f having the values off at the Zi,j points on the ri line are then determined 
by interpolation between the Zi+ imj points on the ri+, line. With the procedure set up 
in this manner, the interpolation is among equally spaced points and its accuracy is 
thus enhanced.The method has been found to not handle highly sheared coordinate 
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systems as well as does the method of Potter and Tuttle [2 191. The final orthogonal 
system is also dependent on the original nonorthogonal system which must be 
sufftciently smooth. 

Agarwal and Bower [3] also took dm as a product of a function of l and a 
function of q, not because of the fundamental requirement for this form, but as a 
convenient way of introducing stretching of the coordinate line spacing. This was 
done by defining p =f,(<) and 1 =fJq) and then solving numerically the system 
given by (B-9) with d~=.Wfi9 with boundary conditions given by integrals of 
(B. 11) along the boundaries. 

Starius [258] has given a general statement of the conditions for the generation of 
orthogonal coordinate systems from 2-D hyperbolic systems. It is well known that for 
any orthogonal coordinates from (B. 11) 

x, = -Fyr, Y, =Fx,, (E.7) 

where F = dgm. Starius has shown that for any orthogonal system, g,, must be 
expressible as a strictly decreasing function of g,, to ensure hyperbolicity of the 
equations. Particular forms of this functional relationship are then given which will 
yield solutions free from discontinuities. For a mesh with little variation in total 
width in the q-direction, the form chosen was 

d&i= (A + Bg,,)/(C + g,,) (E-8) 

where A, B, and C are constants such that A > BC and A + B = 1 + C. If the total 
mesh width varies with <, the form taken was 

lhG=40[1 + W)(l -L?dl”2~ (E-9) 

where a(r), bounded by 0 and 1, is a measure of the total mesh width, and b(r) must 
satisfy certain conditions in concave regions to keep the spacing from changing too 
rapidly. Equations (7) are integrated from an q-line boundary by a Lax-Wendroff 
procedure with F expressed as a function of g,, using this functional relationship 
between g,, and gi, . These solutions have cell aspect ratios near unity, and apply for 
concave boundaries as well as convex. The determination of the various constants 
and functions involved in the functional relationship between g,, and g,, is not 
automated and, in fact, is not completely clear. 

Starius proves that if r is an analytic curve, the solution will be analytic in a 
region containing r, and that if F is independent of q, this region will depend on the 
curvature of r. In fact it is proven that the q = const coordinate lines will cross 
before the solution or its derivatives develop discontinuities. It should also be 
emphasized that as a solution of a hyperbolic system, the coordinate lines will inherit 
any slope discontinuities on lY These discontinuities will propagate along the two 
characteristics through the point of discontinuity on r. 

The stability criteria of the difference scheme limit the step length in the < 
direction. Therefore, in some cases it may be desirable to omit some of the < = const 
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coordinate lines in selecting a grid for further calculations. The final comments of 
Starius should be of interest to anyone using a method requiring smooth boundary 
curves. A discussion is given for a process to construct a smooth curve through a set 
of data points in the plane using cubic splines and then determine the value of the arc 
length parameter. 

This method of generating orthogonal meshes has several advantages over 
conformal mappings. The distribution of mesh points along r can be arbitrary and 
the function F can be used to control the aspect ratio near the boundary. The location 
of the mesh points in the region is determined by a marching process, rather than 
iteratively, and hence requires very little computer time. In general this method can 
only be used to construct coordinate lines near the boundary. In the remaining part of 
the physical region, some other mesh generation procedure would be needed. 

In Steger and Chaussee [262] and Steger and Sorenson [265], it is shown that the 
2-D system 

g,, = 0 (E. 10) 

gz2 + g,, =.m9 ?I (E.ll) 

with f(<, r,r) specified is hyperbolic and well posed for marching away from an q-line 
boundary. The fact that g,, = 0 makes the coordinate system orthogonal. The 
specification of g,, + g,, amounts to specifying the diagonal length of a cell. It is also 
shown that specification of the Jacobian, rather than the cell diagonal, also yields a 
well-posed hyperbolic system. This amounts to specifying the cell volume. 

This latter system is adopted as a generating system in this work. With the system 

g,, = 09 di=f<L rl) (E.12) 

linearized about values on the previous q-line, a block tridiagonal linear system is 
obtained on each successive q-line, and is used to march away from the boundary. 
The specification of the cell volume prevents the coordinate system from overlapping 
even above a concave boundary. In this case the line spacing will expand rapidly 
away from the boundary in order to keep the cell volume from vanishing. Although 
this prevents overlap, the rapid expansion that occurs could lead to problems with 
truncation error. The system, like all hyperbolic systems, propagates boundary 
discontinuities into the field. Both O-type and C-type grids, with boundary values 
specified on the cut in the latter, are given. 

One procedure for selecting the volume specification was given, whereby the 
volume is specified to be the same as that for a cylindrical coordinate system about a 
circle of the same total arc length as the body of interest, with the same point 
distribution by arc length on the circle and with a radial point distribution specified 
as desired. Finally, it is noted that this approach is extendable to 3-D with the coor- 
dinate lines emanating from the boundary being orthogonal to the other two coor- 
dinates, but the latter two lines not being orthogonal. There apparently is no system, 
hyperbolic or elliptic, that will give complete orthogonality in 3-D. 

Both of the systems considered above fall into the general theory of Starius, of 
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course. With the first system, g,, + g,, =f(& q) and g,, is a strictly decreasing 
function of g,, , while, since g = g, i g,, for orthogonal systems, the second system 
has 

(E.13) 

which is also a strictly decreasing function of g,, . Neither of these forms correspond 
to the functions given by Starius for solutions free from discontinuities, and shock- 
like slope changes were noted in the results. 

Helliwell et al. [ 1291 use simple projection of 3-D surfaces along normals to 
produce a series of coordinate surfaces proceeding outward from a finite body. This 
procedure was also followed by Kim et al. [ 1521 using surface streamlines as one 
family on the body surface. Projection along normals and/or other constructed lines 
emanating from the body surface has been used in 2-D by Horstman et al. [ 1371 and 
others for inclined ramp boundaries, Chipman and Jameson [42] for symmetric 
airfoils, and Deiwert [65] for axi-symmetric bodies. All of these works show clearly 
the propagation of boundary discontinuities into the field that is characteristic of 
hyperbolic grid generation. 

2. Field Methods 

Barfield [ 161 used a hyperbolic generating system obtained as the Euler equations 
to minimize a weighted sum of the two integrals 

11 = .. [(x5 - aY,,j2 + (J+ + a~,,)~ drdy, J.! I, = . . (x;, + y;,) d< dq II 
(E. 14) 

with a a constant. The first of these integrals is a measure of the deviation from 
orthogonality, while the second measures the deviation of the mesh quadralaterals 
from parallelograms, both measures being in the least-square sense. The resulting 
hyperbolic system is 

W2X11n9 + w,(xtt + a2x,,) = 0, W2 JJth + w,(Y,, + a2yJ = 0, (E.15) 

where wi and w2 are the weighting factors. If w, = 0 the system becomes elliptic, 
rather than hyperbolic. It was noted that for a either too large or small, overlapping 
of the coordinate system occurred. Although the coordinate system of the last two 
paragraphs are not necessarily orthogonal, these procedures are grouped here with the 
other hyperbolic systems. 

A different approach was taken by Coleman [51] who solved the system ( g12)l = 
(g,&,, = 0 for simply connected regions with square corners. Combinations of these 
two equations were used to obtain two second-order coupled equations for x and y 
which were solved iteratively with arbitrarily specified boundary values of x and y. 
Since zero values of p are explicitly enforced only at the corners, rather then on the 
entire boundary, the solution is subject to numerical errors in the preservation of 
orthogonality over the field, and in fact overlapping of the coordinate system 
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occurred in one example given with a strongly convex boundary. 
in fact, not well posed and the solutions are not unique. 

In Warsi and Thompson [3 131, a noniterative procedure is 
Gaussian equation of a Euclidean space, 

This formulation is, 

given based on the 

(E.16) 

For an isothermic orthogonal system (g,, = g,, , g,, = 0) this equation reduces to 

6% + %JNog g, 1) = 0. 

For an’ annular region between two arbitrary-closed v-line curves the solution of this 
equation is given as an infinite series in circular functions of r and hyperbolic 
functions of q, the coefficients of which are determined by quadratures of the 
boundary values of log g,, . These boundary values of log g,, are calculated by 
differentiation from specified boundary values of x and y. Field values of x and y are 
then calculated by quadratures using the field values of g,, . 

The point distribution on one boundary is arbitrary, but the distribution on the 
other boundary must be determined in orthogonal correspondence to the specified set 
of points. This is done by circumscribing circles about each boundary, transforming 
these two circles conformally to concentric circles, and then locating the boundary 
points on common radii on the concentric circles. The corresponding boundary points 
in the physical plane then will be in orthogonal correspondence. As noted in 
Section B, it is only necessary to solve for the isothermic system, as described above, 
and then to specify the 1-D stretching functions p(l) and v(v) to alter the coordinate 
line distribution as desired while maintaining orthogonality. 

F. NEARLY ORTHOGONAL SYSTEMS 
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the inner curve, normals are constructed, and the points of intersection with the next 
curve outward are determined. Normal directions from the intersection point are 
determined and translated to the original point in the inner curve. Then a second 
point on the outer curve is determined as before. Finally, the new coordinate lines are 
constructed as straight lines joining the selected points on the inner curve with points 
located halfway between the corresponding pair of points on the outer curve located 
as described above. The resulting lines will not actually be orthogonal to either the 
inner on outer curve, and the slopes of these lines will, in fact, be discontinuous at 
each curve. The observed departures from orthogonality, however, have been small 
and the departure may be made arbitrarily small by the addition of more curves. 
Since the procedure is applied successively between pairs of coordinate lines, concave 
bodies. can be treated as well. Graves and Hamilton distributed the coordinate lines 
by a stretching function to treat viscous flows. 

Ghia et al. [ 1001 give a somewhat related procedure in which values of g,, are 
calculated between two adjacent lines of a nonorthogonal grid, using averages of the 
derivatives along the lines. This is done along the pair of lines until a sign change in 
g,, occurs, after which linear interpolation is performed to locate a point where g,, 
should vanish. This point then replaces one of the original points on the outer line, 
while the points on the inner line remain fixed. This new point is then used as the 
calculation of g,, is repeated for the next points along the pair of lines. When new 
points have been determined on the entire outer line, the calculation proceeds outward 
to the next pair of lines, using this line as the inner line. This procedure results in the 
same type of discontinuities and lack of complete orthogonality as does the Graves 
method. Problems of cross-over of lines were noted in concave regions. A similar 
procedure was also given with the angles of intersection of the lines specified at some 
nonzero values. 

2. Determination of Orthogonal Control Functions 

Visbal [299] gives a more complicated procedure for generating nearly orthogonal 
coordinate systems for simply connected regions, based on the use of the general 
equation for orthogonal systems (B.7). First a preliminary grid with only a relatively 
small number of equally spaced q-lines, but all the desired r-lines, is generated by 
solving (B.7). 

System (G.6) is then solved with these final boundary values and control function 
values calculated from the preliminary solution. The final solution will not be exactly 
orthogonal because the control functions (P and Q) used are not actually equal to the 
right side of the general orthogonal system equations (B.7) for the final solution. The 
departure from orthogonality is dependent on the proximity of the preliminary 
solution to the final solution. 

3. Methods Based on Conformal Transformations 

The procedure of Sock01 [249] uses two conformal mappings followed by a 
numerical coordinate generation to produce C-type systems for cascades that are 
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continuous and nearly orthogonal. In the first transformation, the exterior of a 
cascade of semi-infinite flat plates extending from a point inside the body leading 
edge to the downstream end of the wake is mapped to the interior of a closed curve 
enclosing the origin. The second conformal transformation maps a unit circle 
centered at the origin into an infinite rectangular strip. The image of the actual blades 
and straight wake lines after this second transformation is a pair of parallel straight 
lines connected by a roughly S-shaped curve. The final transformation transforms 
this infinite strip with curved sides into an infinite rectangular strip. This last 
transformation is done numerically by solving for the potential and streamlines for 
flow through the strip by a panel method using straight panels with uniform 
singularity distributions thereon. Continuity across the wake line is achieved by 
proper selection of the final curvilinear coordinate increment along the wake line in 
relation to the cascade separation, together with some other adjustments near the 
trailing edge. The spacing of points at the two ends of the strip, and hence of the C- 
type lines around the blades, is arbitrary and can be done by stretching distribution 
functions. With the boundary values known, the final curvilinear coordinates in the 
field are generated by solving the transformed Laplace equations by AD1 iteration. 

Moretti [203, 2041 used successive applications of the Karman-Trefftz transfor- 
mation to map a contour with slope discontinuities to a near circle, each application 
removing one or a pair of corners. It is further suggested that a sequence of 
elementary transformations, Karman-Trefftz, Joukowski, bilinear, logarithic, etc., be 
used, together with a judicious placement of singular points through translations and 
rotations, to map a general contour to a near circle. Although the near circle could 
then be mapped to an exact circle by the Theodorsen procedure, Moretti favors 
replacing this time-consuming procedure with a single shearing transformation to 
open the near circle into a rectangle. The end result would, of course, not be 
orthogonal, but the departures from orthogonality would ordinarily be small. 

This approach was used in Hall [ 1181 by defining hinge points at a specified 
uniform distance inside the body along normals at equally spaced points on the body 
contour. (The locations of these normals are not related to the final position of coor- 
dinate points on the body contour, and there are fewer of the former.) A sequence of 
elementary transformations then moves the hinge points one at a time to the real axis. 
(This is equivalent to a point-wise Schwarz-Christoffel transformation.) When all of 
the hinge points are on the real axis, the body contour will be a wavy curve above 
this axis. An elementary conformal transformation is then used to map a specified 
straight line, extending through the body to infinity in both directions, onto the 
imaginary axis. A final shearing transformation then is used to map the region of the 
upper half-plane, bounded below by the body contour, onto a rectangle. The final 
system is thus nearly orthogonal. 

The use of a shearing transformation as a final step to make a rectangle out of a 
conformal system that does not have an exact circle for a boundary has been used by 
Jameson [146], Caughey and Jameson [32], Jameson and Caughey [ 1471, Chen 
[38], Caughy [31], Chen and Caughey [39,40], Sankar et al [237], and Steinhoff 
and Jameson [266]. In these works the region exterior to a body is first unwrapped to 
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an infinite strip of variable width by a conformal transformation. The width of the 
strip is then made constant by a shearing transformation. The conformal unwrapping 
of the region about the body is done by replacing the body by a straight line and 
mapping the region exterior to this modified body to a rectangular strip. The actual 
body contour then will correspond to wavy sides of the strip. The final coordinate 
system is nearly orthogonal. The coordinate systems are of the C-type for bodies in a 
channel, where the system is generated by extending the straight line that replaces the 
body downstream. For unsymmetric bodies, the coordinate lines are not necessarily 
continuous across the wake line behind the body. This problem does not arise in the 
application to semi-infinite bodies, of course. Pelz and Steinhoff [335] produced a 
slit-type configuration for an airfoil with line concentration near the leading edge by 
using a modification of a complex square root transformation and a shearing 
transformation. The resulting system deviates somewhat from orthogonality in the 
vicinity of the leading edge. 

Dulikravich [69] generated a conformal system for a strip region of variable width 
containing a turbine blade cross section by mapping the blade contour to a slit, and 
the strip boundary to a deformed circle. This region was then opened up into a 
rectangle by a shearing transformation. This procedure was applied in Dulikravich 
and Sobieczky [70]. In Dulikravich [69], this mildly nonorthogonal system was 
draped on a curved surface cutting the blade and being coaxial with the hub axis, the 
distance of this surface from the axis being variable with axial position. The final 3-D 
coordinate system was determined by fitting cubic splines to the 2-D mesh points and 
interpolating for the 2-D coordinate values at given axial and circumferential 
positions. Problems were encountered with very thick, highly staggered, closely 
spaced blades, and it is suggested that the blade cross section be transformed to an 
arc rather than a slit in such cases. 

G. SYSTEMS FROM ELLIPTIC EQUATIONS 

In this section, several types of elliptic generating systems are discussed, most of 
which belong to the class of quasilinear systems defined by (B.22). Both 2-D and 3-D 
are covered. The 1-D form of any of the elliptic systems can be used to solve for a 
point distribution along a boundary line as in Steger et al. [263], Lee and Rubbert 
[172], Lee et al. [171], and others. 

The classical results dealing with 2-D harmonic mappings, i.e., curvilinear coor- 
dinates satisfying Laplace equations, date from the early paper by Lewy [ 1741. That 
paper begins with the principal theorem which states that if <(x,v) and ~(x, y) are 
harmonic then the Jacobian (of a one-to-one transformation) does not vanish. This 
result is also extended to mappings generated by a certain classs of quasilinear 
equations. Further refinements on mappings satisfying the quasilinear system defined 
by (B.22), i.e., in 2-D 

V(=P, V2y=Q (G.1) 
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were made by Heinz [ 1281, who proved that for one-to-one mappings, the Jacobian is 
not only nonvanishing, but in fact there exist positive lower bounds for the Jacobian. 
Unfortunately, these lower bounds are not computable and only hold for the case 
where P and Q are quadratic polynomials in the derivatives <,, &, qX, and vu. 

The papers of Lewy and Heinz do not deal with the grid generation problem. The 
implications of their results should be noted, however. It can be stated that when 
constructing one-to-one mappings by solving the elliptic systems with the quadratic 
polynomials P and Q, the computed Jacobian of the transformation will not approach 
zero as the mesh is refined. 

1. Harmonic Mappings 

The simplest elliptic partial differential equation is, of course the Laplace equation, 

v2y = 0, v2y=o (G-2) 

and its use as the generating system for a coordinate system was suggested by 
Crowley [59] in 1962. Winslow [321] notes that this system had been proposed even 
earlier at the Lawrence Livermore Laboratory by C. E. Leith. With the dependent 
and independent variables interchanged, the equations in the transformed plane 
become, from (B.23), 

with 

g22*11- 2&2X{q + g11*n?J = 0, g22 Y,, - %I2 Yr?j + g1 I Y?Jq = 0 (G.3) 

g,,=xf,+Y:T g,, =*I*, +Y,Y,, g,,=*:+y: (G-4) 

for solution in the transformed plane. This form was given in 1963 by Winslow 
[319]. The implication in Lau [ 1661 that this coordinate generation procedure is 
limited to orthogonal systems is incorrect. 

It was shown in Mastin and Thompson [ 1851 that the harmonic mapping 
generated by the system (G.2) has a nonvanishing Jacobian for any simply or doubly 
connected region mapped onto a rectangle in the transformed plane. This generating 
system was used by Chu [43-45] and Maria-Sube [ 1811. Chu showed that partial 
differential systems do not change type under the transformation. In the work of 
Winslow, and that of Chu, the curvilinear system was generated only to serve as a 
means of constructing triangular elements. Thompson et al [286] gave several 
examples of the use of the Laplace equation as the generating system for general 
shaped bodies and extended the concept to fields containing any number of bodies. 

2. 2-D Quasilinear Systems of (B.22) 

Godunov and Prokopov [ 1081 introduced the idea of controlling the spacing of the 
coordinate lines by taking the Laplacian to be nonzero. Their method, though given 
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as a subsequent stretching transformation applied to the system generated from the 
Laplace equations, is equivalent to using a system of the form of (B.22), in particular, 

v ‘r = gptx, Y), V*rl = gQ(x, y) (G.5) 

with the functions P and Q chosen a priori to control the line spacing. As noted by 
Thompson et al. [288] using the form of (B.22) with the control functions P and Q 
taken as functions, respectively, of < and q rather than functions of the Cartesian 
coordinates as in Gudonov and Prokopov, allows attraction of coordinate lines to 
other coordinate lines of the same type. This topic is discussed more fully in 
Section K. 

The elliptic generating system in Thompson et al. [288] was also of the form of 
(B.22), but with the control functions dependent on both curvilinear coordinates, 

v2r = w, s>, V2rl = QtL II). (G-6) 

In the transformed plane this system becomes, from (B.23), 

gzzxll- &,2x,, + gllx,m = -gtPx, + Qx,> 

g22 Y,, - a12 Y,, + g,, Y?Jn = -gm, + @,I. (G-7) 

This coordinate generation code, as described in Thompson ef al. [287, 2881 has 
been made available by NASA through its COSMIC code library. The code allows 
physical boundary segments to be distributed on the rectangular boundary of the 
transformed plane in a very general way (cf. Section I), and a number of examples of 
different configurations are given in [287, 2881, together with examples of coordinate 
line control as discussed in Section K. The multiplicity of the physical region is 
unlimited, and examples of application to fields containing two bodies are given. 

A general discussion of the use of this type of generating system is given in 
Thompson [285]. A number of applications of this type of generating system to the 
solution of flow problems is given in Thames et al. [276] and in Thompson et al. 
[289, 2901. This type of generating system has also been used by Chang [36], Dow 
[67], McWhorther and Sadd [195], Young [329], Kumar [162], Roach and Sankar 
[231], Hodge et al. [132], Hegna [127], Forester [84], Warsi et al. [310], Warsi et 
al. [311], Warsi et al. [314], Bearden [18], Kwon [165], Turner [294], Thompson 
[283], Cooper [54], Cooper and Thompson [55], Johnson and Thompson [149], 
Steger [259, 2601, Steger and Sorenson [264], Sorenson and Steger [251], Sorenson 
[250], Johnson and Thompson [150], Cooke [53], Hindman et al. [130], Holst and 
Brown [135], Mikhail et al. [200], Camerero and Younis [27], Ohring [212], 
Johnson [148], Coleman [50], Lugt [179], Coleman [52], and others. Long [178] 
applied this type of generating system to multiple airfoils after first transforming 
infinity to a point algebraically in the manner of Grossman and Melnik [ 1161. Piva et 
al. [217] used the elliptic generating system (G.6) to generate grids for a finite 
element version of the MAC method, but no results have yet been obtained. 

The use of cylindrical coordinates, rather than Cartesian, in the physical plane 
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from which the transformation is made was given by Ghia and Ghia [94], Ghia et al. 
[95, 981, and Ghia et al. [IOO] using a generating system of the form of (B.22), but 
with the Laplacian expressed in cylindrical coordinates. Here the transformed 
equations become 

al rKK + a, I,,,, + a3 rKK + 2a, r[,, + 2a, r,c + 2a,rII - (l/r) + Pr, + Qrt, + Rr, = 0, 

a,e,,+a,e,,+a3e,I+2a,8,,+2a,e,,+2a,e,,+Pe1+Qe,+Re,=o, 

a, zKK + a,?,,, + a3zKI + 2a,zl, + 2a,z,[ + 2a,zt1 + Pz, + Qz,, + Rz, = 0, 

VW 

where 

a, = t: + (l/r') t$ + tf , a2 = II: + (l/r') ri + VI, 
a3 = Cf + (l/r2) 4; + CZ, a4 = t,v, + W2) rev0 + L rz, 
a, = ~4, + U/r') bL + rlA a6 = CL + (l/r2) Cot0 + LL. (G.9) 

The equations are given for 3-D, but application was restricted to 2-D. Cylindrical 
coordiantes were also used in Lombard et al [ 1761, Camarero and Reggio [26], and 
Goldman and Kao [334]. Ghia et al. [lOO] also used parabolic coordinates in the 
physical plane. Goldman and Kao [334] solved the 2-D heat transfer equations for a 
rectangular plate with a circular hole using both Cartesian and cylindrical coor- 
dinates in the physical plane and found no essential difference in the results. 
Examples of the use of cylindrical coordinates with multiple holes are also given. 

Another form of the generating system given by (B.22) was used by Shanks and 
Thompson [244], this form being written as 

v2r = I WI2 w, ?I, V2rl = IW12 Q(k rl). 
The transformed system then is, from (B.23), 

(G. 10) 

g,,xtl- 2gnxto + g,lx,, = -( g,J’x~ + s,,Qx,> 
g22 Ysr - a12 Y,, + g11 Y?vl= 4 g22PYt+ g11 Q.hJ (G.11) 

This form was prompted by the fact, as used in Warsi and Thompson [ 3 121, that 
this form is integratable in closed form for concentric circular boundaries if the 
control functions are expressed as total derivatives, one of < and the other of v, so 
that separation of variables is possible. This fact, leads to a procedure for the deter- 
mination of the control functions from the boundary point distributions in certain 
applications as discussed in Section K. In general, the magnitudes of the control 
functions used with (G.lO) will be several orders of magnitude smaller than those 
used with (G.6), since the control functions in (G.lO) are multiplied by the square of 
the Jacobian which will be quite small where the lines are concentrated. 

This form has also been used by Knight [ 1561, Middlecoff and Thomas [ 199 1, 
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Thomas [280], Reddy and Thompson [226], Yu [330], Lee and Rubbert [172], Lee 
et al. [ 17 I], and Yu [33 11. (In Yu [33 I] the definition of the control function is not 
consistent with the transformed equations given. The square of the Jacobian should 
not appear in [331, (3)].) In Yu [330] consideration was given also to a linear system 
in the transformed plane, with constant coefficients of each derivative and no cross 
derivatives. This did serve to increase the convergence speed of the coordinate 
solution and provided grids that were qualitatively as good as those from (G.lO). 
Linearity in the transformed plane, however, causes nonlinearity in the physical plane 
with the consequent loss of extremum principles and a greater possibility of 
overlapping of grid lines. Lee [ 169, 1701 also used this form and determined the coef- 
ficients from linear interpolation of the values calculated from the boundary point 
distributions, proceeding from edges to the calculation of surface coordinate systems 
and then to the 3-D system as described in more detail in Section K. 

Still another form has recently been proposed by Winslow [321] by analogy with 
general diffusion equations. Thus if we take 

then 
v * (D V<) = 0, v * (D Vq) = 0, 

V2< = -(l/D) VD . V<, V 2rl = -(l/D) VD . VQ (G.12) 

where the function D = D(<, r) serves as a means of coordinate control. The 
transformed equations are, using (B.22), 

di 
gnxtl- &,zxt,, + gllx,,,j = - 7 (D, Y, - D, Y& 

g,, art - 2g,, or,, + g,, y,jq = - 7 Ptx, - D,x,). (G.13) 

Still another elliptic system was used in Cosner [56] but the details of its origin are 
not given. 

3. 3-D Quasilinear Systems of (B.22) 

Generating system (G.6) was extended to 3-D by Mastin and Thompson [ 1881, 

where it is demonstrated that the harmonic mapping in 3-D is one-to-one. It is further 

shown that the more general mapping with nonzero LaphAms yields a differentiable 

homeomorphism if the Jacobian does not vanish. Thus the mapping will be globally 

one-to-one and not just locally one-to-one as implied by the inverse function theorem. 

Thus, from (B.23), 

dl+ + 2d2Xss + &t3Xs, + g22x,, + 2g23x,c + g33x15 + Px, + Qx, + Rx, = 0, 

g”Y,, + 2d2Yttl + 2d3YYrr + g22Yvn + 2g23y,,c + g33yy,, + Or + QY, + Ry, = 0, 

g”+ + 2g’2ZI,, + 2d3zrr + g22z,,,, + 2g”z,,< + g33zLl + Pz, + Qz,, + Rzg = 0. 

(G. 14) 
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The system of (G.14) was applied to fully 3-D fields about relatively simple bodies 
by Mastin and Thompson [ 1871, Mastin et al. [ 1891, and Ghosh et al. [ 1011. 

More general 3-D configurations were treated by Yu [330], Lee and Rubbert 
[172], Lee et al [171], Lee [169], and Yu [331], using a multiple block structure in 
the transformed plane. This is a patched coordinate system of the type discussed in 
more detail in Section J. 

Some 3-D problems can be treated using coordinate systems made of stacked 2-D 
systems. The actual solution of the coordinate generating system is then still a 2-D 
solution. This approach was used in Holst [ 1331, with the 2-D systems generated 
using (G.6) being individually translated and rotated to make the stack fit a swept, 
twisted wing. Good results were obtained for transonic potential flow. Roberts and 
Forester [233] also used 2-D systems from (G.6) in a stack for ducts transitioning 
from rectangular to round, and good results were obtained for compressible viscous 
flow. This was done in more generality in Eiseman [79]. The coordinate systems were 
called tube-like coordinate systems and were generated in smoothly transitioning 2-D 
planes that were normal to a specified, possibly curved, centerline. The system (G.lO) 
was applied in this fashion by Sha et al. [239] to nuclear reactor fuel rod bundles. A 
similar approach is to connect 2-D systems generated in meridional planes all 
containing a common axis as in Hall [ 1181. In still another approach, Dulikravich 
[69] draped 2-D systems on sections of curved surfaces forming a stack of curved 2- 
D sections. This involved an approximation since no surface curvature terms were 
included in the generation of the 2-D system. The 3-D system with the control 
functions in the form used in (G.lO) is given in Thomas [280]. The transformed 
equations in this case are simply (G.14) with P, Q, R replaced by g”P, gz2Q, and 
g33R, respectively. 

4. Quasilinear Systems in the Physical Plane 

Although in most works the elliptic generating system has been defined in the 
physical plane, with transformation before solution, Bartield [ 151 and Amsden and 
Hirt [5] defined the generating system in the transformed plane in the form of (B.12) 
(with a a constant) 

%I + ax,, = 0, y,, + aym =o (G.15) 

which becomes in the physical plane, 

~22~xx-~~12~xy+~ll~yy=~~ ~2*~xx-~~12~xy+~lllfyy=~ (G.16) 

with 

With the use of such a quasilinear system in the physical plane, however, the 
extremum principles are lost and overlapping of the coordinate system can occur, as 
proved to be the case with this generating system. 
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Chen and Caughey [41] also used (G.15), but with a taken as g,,/g,, rather than 
a constant. This is actually the form of (B.12) for an orthogonal system. The 
conditions of orthogonality, however, were not imposed on the boundary, the 
boundary point distribution being specified arbitrarily. Also, g,,/g,, was forced to be 
a function only of < by substituting the average value over each q-line for a after each 
iterative sweep, a being held fixed during each sweep. In this way the influence of the 
boundary point distribution is spread into the field, with a acting essentially as a I-D 
control function determined by the boundary distribution. This again is a case of a 
quasilinear system in the physical plane, so that the extremum principles are lost and 
overlap is possible. 

5. Quasiconformal Mappings 

The generation of quasiconformal coordinate systems as solutions of variational 
problems has been used by Belinskii et al. [ 191. This method shares a common theme 
with the method of Godunov and Propokov [ 1071 in Section D. There are, however, 
some significant differences. The boundary correspondence is given and does not 
change. The integral to be minimized is of the form 

IÎ  [4x: + Y:> - WV, + Y, Y,) + C(x5, + Y;)l&- &. 
D 

(G.18) 

Coefficients A, B, and C, are functions of < and q of a particular type and are to be 
chosen as part of the minimization process. It is shown that the solution of the 
variational problem results in a quasiconformal mapping of the square region onto 
the physical region. Quasiconformal mappings satisfy the Beltrami equations (B. 18), 
a system of first-order partial differential equations which are a generalization of the 
Cauchy-Riemann equations. Furthermore, the mapping is one-to-one with a 
nonvanishing Jacobian. Orthogonality of coordinate lines does not hold. 

Mastin and Thompson [ 1841 obtain boundary conditions for a quasiconformal 
mapping of an arbitrary multiply connected region, bounded by a closed curve 
surrounding any number of bodies, onto a rectangular region of the same multiplicity 
within which each body transforms to a slit. A procedure for the numerical 
generation of the mapping is then given. The generating system is (B.20), with (B. 18) 
to be satisfied on the boundary. Quasiconformal mappings have also been 
constructed by Weisel [317] using a finite element method based on the variational 
principle satisfied by the mapping. The method of Mobley and Stewart [202] for 
conformal mappings has been extended to the quasiconformal case by Mastin and 
Thompson [ 1831. 

6. Smoother 

In a procedure related to the use of elliptic generating systems, Gerhard [93] and 
Kowalski [ 1601 made several applications of a live-point smoother over the field to 
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an algebraically generated grid. This is equivalent to performing several SOR 
iterations of Laplace’s equation in the transformed plane, i.e., 

XI{ + %I = 0, etc. (G.19) 

using the algebraic grid as the initial guess. Thacker et al. [275] used a related 
procedure to redistribute points of an initially uniform triangular mesh by considering 
the points to be connected by springs. With all the spring constants the same, this 
amounts to placing each point at the average of the locations of its six nearest 
neighbors. (With only four nearest neighbors, as is the case with quadrilateral grids, 
this is equivalent to applying (G.19) as above.) Provision was also made for varying 
the spring constant near the boundaries. 

7. Gaussian Surface System 

Recently, Warsi [308] has developed a method of 3-D coordinate generation based 
on the solution of a coupled system of elliptic equations in the Cartesian coordinates 
x, y, z. These elliptic equations have been obtained by combining the second 
derivative formulae of x, y, and z in terms of the space Christoffel symbols with the 
formulae of Gauss for a surface. The resulting equations are then subjected to the 
differential constraints 

Al<= 0, A,r=O, (G.20) 

where 

A, ~g-“~ [$ p ( g22-&g,2;) I+$/ P ( g1+h2$) 119 

where r and q are the coordinates in a surface to be generated, and A, is the second 
order Beltrami differential operator. These second-order equations are invariant to a 
coordinate transformation so that they remain the generic equations when any sort of 
coordinate redistribution, such as concentration, is desired. This redistribution of 
coordinates is, however, felt by the generating equations in x, y, and z which are to be 
solved under the prescribed Dirichlet data. Application of these equations for 
numerical coordinate generation for some simple configurations has been found to be 
quite encouraging. Coordinates between an inner ellipsoid and an outer sphere have 
been obtained both by an exact analytic method and by the numerical solution of the 
equations. Both solutions match very well. 

The modification of (G.11) given by Thomas [280] for the generation of a 2-D 
coordinate system on a curved surface is a simplification of this general development 
in which it was assumed that the coordinate lines eminating from the surface were 
orthogonal to the surface and had vanishing principal curvature at the surface. 

8. Adaptive Systems from Variational Principles 

The elliptic partial differential equations defining the curvilinear coordinates can 
also be obtained as the Euler equations of the minimization of a functional. This 
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approach as used by Yanenko et al. [326], Yanenko et al. [327], and Brackbill and 
Saltzman [21,22] is discussed in Section M. This use of such variational principles 
is attractive in that it allows various properties of the mesh, such as smoothness, 
departure from orthogonality or conformality, and the resolution of solution gradients 
to be balanced against one another to achieve an optimum mesh. 

H. SYSTEMS FROM ALGEBRAIC TRANSFORMATIONS 

Algebraic transformations are attractive in that no numerical solution of a partial 
differential system is involved. It is apparent from the previous discussion that partial 
differential equation methods can require a certain amount of ingenuity to solve 
equations, to start such solutions, to obtain some grid control, and to lay out 
boundary data for some rectilinear solution domain. In the layout of boundary data, 
algebraic methods are more sensitive to pointwise distributions that are specified on 
the boundaries. It should be noted, however, that elliptic partial differential equation 
methods are not devoid of such sensitivity, but are more forgiving than algebraic 
methods. 

Many of these algebraically generated grids lack the smoothness that results when 
an elliptic partial differential system is used to generate the grid, and, as noted in 
Section 0, truncation errors may be significant in regions where the grid is not 
smooth. It should be noted, however, that elliptic systems using discontinuous control 
functions, such as given by (K.l) with the sign changing feature, will not maintain 
continuity beyond C’. For a grid generated by an elliptic system (B.22) to be C*, it is 
sufficient that the control functions Pi be C* (see Courant and Hilbert [57]). The 
results of Shang [242] show kinks in the solution corresponding to regions of rapid 
grid spacing change radiating outward from the boundary. It should also be noted 
that local controls in the multisurface transformation discussed below can be used to 
prevent nonsmooth boundary behavior (e.g., slope discontinuities) from propagating 
inward. Another example of the effect of a slope discontinuity being propagated into 
the field is found in Chaussee and Pulliam [37]. The discontinuity here was 
apparently produced by the application of a stretching function to the coordinate 
system generated by an elliptic system. The results given show a clear slope discon- 
tinuity in the pressure contour corresponding to that in the coordinate lines. Gerhard 
[93] and Kowalski [ 1601 smoothed an algebraically generated grid by repeated 
application of a five-point smoother over the field. This is equivalent to performing 
several SOR iterations of Laplace’s equation in the transformed plane (G.19), with 
the algebraic grid as the initial guess, as discussed in Section G. This smoothing was 
also applied in Forester [84]. 

1. Shearing Transformations 

The transformation of the four-sided region formed by two curves connecting two 
straight lines in the physical plane into a rectangle in the transformed plane by 
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simply normalizing the coordinates is generally termed a shearing transformation and 
has been widely used because of its inherent simplicity for regions of fairly regular 
shape. This amounts to placing the transformed coordinate points on straight lines 
connecting boundary points. The distribution along these straight lines may be 
according to some specified stretching function that concentrates points as desired. 
Lack of boundary smoothness propagates inward unless clustering along the 
boundary is done at nonsmooth points. 

Some examples of such transformations are Daly [60], Viviand and Ghazzi [301], 
Deiwert [65], Gibeling et al. [102], Shamroth and Gibeling [240], Vigneron et al. 
[296], Robertson et al. [235], Carter [28], Peery and Forester [215], Daywitt et al. 
[63], Rakich et al. [225], Tannehill et al. [271], Kutler et al. [ 1641, Pulliam and 
Steger [220], Hsieh [138], Drummon and Weidner [68], Chaussee et al. [37], 
Tannehill et al. [272], Hsieh [139], Gal-Chen and Somerville [90, 911, Clark [48], 
Thomas [279], Tatom et al. [273], Caspar and Verdon [30], Kowalski et al [161], 
Graham et al. [ 1111, Cline and Wilmoth [49], Swanson [267], Rizk et al. [228], 
Chang [35], Steger [259], Green and South [115], and Verdon and Casper [295]. 

Daly used straight lines normal to the centerline of a variable width channel, and 
Peery and Forester used exponential point distributions along the straight lines. 
Viviand and Ghazzi used lines inclined at a specified distribution of angles to the 
body axis, extending through the body surface to a bow shock. Deiwert used normals 
to an airfoil ahead of maximum thickness and normals to the airfoil chord aft of 
maximum thickness and in the wake for a C-type system. A similar procedure was 
used by Carter. Gibeling, Shamroth, and Eiseman, and Shamroth and Gibeling used 
normals to an inner boundary, with the outer boundary located at equal distances 
along these normals. With the same point distribution on each line, this produces an 
orthogonal system except along lines emanating from surface slope discontinuities. 
Vigneron, Rakich, and Tannehill, Chaussee et al., Tannehill, Venkatapathy, and 
Rakich, Kutler, Chakravarthy, and Lombard, and Hsieh constructed 3-D systems 
using straight lines connecting inner and outer surfaces. Caspar and Verdon used a 
slit-type grid for cascades. Steger patched this algebraic grid with one generated by 
an elliptic system as discussed more fully in Section J. Chakravarthy [33] used both 
such an algebraic grid and an orthogonal grid for the same transonic nozzle problem. 
Different flow algorithms were used on each, however, and no comparison of the 
grids was made. 

Eiseman [75] constructed a coordinate system for a periodic cascade by 
connecting points distributed by interpolation on straight lines normal to the airfoil 
surface. The periodic portions of the outer boundary encircling the airfoil are taken 
parallel to an airfoil camber line extended beyond each end of the airfoil. The 
distances of these portions of the outer boundary from the airfoil are determined so 
that the airfoil surface normals off the concave side would not intersect. The 
remainder of the outer boundary is formed by bicubic curves matched to the periodic 
portions in location and slope at selected distances fore and aft of the airfoil. The 
point distribution on the outer boundary is directly determined so that the periodicity 
conditions are satisfied. The pointwise distribution on the inner boundary is deter- 
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mined in an iterative procedure by which orthogonality conditions are satisfied along 
the airfoil. The hyperbolic tangent stretching function from Roberts [234], is 
generalized to distribute the points on the straight lines connecting the airfoil with the 
outer boundary. The generalization was made to smoothly deform away from a small 
uniform mesh near the airfoil surface. 

2. Boundary Value Interpolation 

Using a technique common in finite element work, Baker and Manhardt [ 121 
generate the coordinate system in 2-D and 3-D subdomains by biquadratic inter- 
polation in terms of boundary values at corner points and one point on each edge 
joining the corners. Only those corner and edge points are matched by the inter- 
polant, and the metrics are discontinuous at the subdomain boundaries. Frey et al. 
[87] considered similar bilinear and quadratic interpolation and derived sufficient 
conditions for which the transformation would be one-to-one and have a 
nonvanishing Jacobian. 

The above procedure is a specific application of translinite interpolation, also 
called blending function or connecting function interpolation, widely used for 2-D 
and 3-D representation of interior functions in terms of boundary functions in finite 
element solutions. In this procedure, a function on a region is represented in terms of 
functions specified on the region boundaries, and perhaps also functions specified on 
certain other curves (surfaces in 3-D). Thus, in 2-D, 

where d&)=6, and w,(q,)=S,, with O=c, < ... <&= 1 and O=q, < g, < .a. < 
‘I, = 1. Thus, the function F(& q) equals the function f(<, q) on the lines < = ri and on 
the lines q = vi. Here Z > 1 and J > 1, i.e., the function F(<, q) matches f(<, q) on the 
boundaries and possibly on certain specified lines between. This interpolation is 
called tramfinite because the interpolant matches the function at an infinite set of 
points, i.e., on curves, rather than at a finite set of points. With I = J= 1 the inter- 
polation is in terms of only the specified function on the bounding curves. Equation 
(H.1) can also be written as a two-step procedure, 

In this form the ultimate bivariate interpolation appears as two successive 1-D inter- 
polations. 

581/47/l-4 
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Transfinite interpolation is discussed in some detail in Gordon and Hall [ 1091. It is 
noted that care must be exercised in specifying the parameterization of the boundary 
curves, i.e., in the specification of f(&,, q), else overlapping of coordinate lines can 
occur. Such overlap can be corrected, it is stated, by specifying interior curves, Z or 
.Z > 1, but no general procedure is given. This method is more sensitive to the 
boundary point distribution than are the partial differential equation methods, which 
also must have well-poised boundary distributions. The curvilinear coordinates in the 
blending functions may themselves be expressed as functions of other curvilinear 
coordinates over the same range by what is termed a stretching transformation, 
discussed in Section L, in order to more easily concentrate coordinate lines as 
desired. Thus the blending functions can be taken to be simply polynomials, the 
arguments of which are expressed in terms of the final curvilinear coordinates by 
stretching functions. Alternatively the blending functions may themselves be designed 
to accomplish the desired concentration of coordinate lines as in Eriksson [83] and 
Rizzi and Eriksson [230], where exponential functions were used. 

The procedure can be extended to match derivatives of the function on the boun- 
daries and/or on other selected lines as well. Smith and Weigel [248] and Smith 
[247] give such an extension for 3-D, but using interpolation in only one coordinate. 
Thus 

W-2) 

Here wi(cj) = 6, and &(cj) = a,, and w!(rj) = &(Cj) = 0, i = 1, 2, j = 1, 2. These 
functions are cubic polynomials, in fact, the Hermite interpolation polynomials, since 
the derivative, as well as the function, is matched on the boundaries. The system can 
be made orthogonal at the boundaries by specifying appropriate C-derivatives. 
Stretching functions were used to transform the coordinate [ in order to concentrate 
lines near boundaries. This procedure was applied in Smith [246], Shang et al. [243], 
Shang [242], Forester [84], and in Kowalski [ 1601. Kowalski made the blending 
functions dependent on the boundary slope to prevent overlapping of the coordinate 
system. The ability to control the slope at the boundary allows coordinate systems in 
complicated regions to be patched together from systems generated in simpler regions 
with continuous first derivatives of the coordinates at the joining surface. In the same 
way, simple coordinate systems can be embedded in larger systems. 

Forsey et al. [ 861 used M = N = 2 in (H. l), so that the interpolation is bilinear, 
matching the function at the boundaries. The procedure is applied to subdomains 
which are patched together to form the complete system. The metrics are discon- 
tinuous at the patches. 
As with grids generated from partial differential equations, 2-D grids generated 
algebraically can be stacked to produce a 3-D system as in Shang [242]. Such a 
procedure may not be sufficiently smooth in the third direction in all cases, however, 
regardless of the type of 2-D generation system used. 

Application of transtinite interpolation in 3-D has been given by Gerhard [93], 
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Anderson and Spradley [9], and Spradley et al. [253]. In 3-D, the general equation 
(H.l) is replaced by 

- i f j  #i(t) Pk(O f(ti9 ?7 Ck) 
i=O k=O 

- i 5 ~j(~)Pk(~)f(h ‘lj9 ck) 
j=O k=O 

I .I K 

(H.3) 

with (i(tlj) = 6,, ~~(rt/) = 6,, and Pi(cj) = 6,. As in 2-D, the ultimate trivariate inter- 
polation given by (H.3) can be written as a sequence of three 1-D interpolations; 

In all of the above works, I = J = K = 1, so that the function values are matched 
on the bounding surfaces. The procedure is applied to subdomains, and the entire 
system is constructed by patching, with discontinuous metrics at the patches. 
Anderson and Spradley use a set of basic edges and surfaces, i.e., straight, circular, 
conic, helical, or sinusoidal arcs for edges, and flat, cylindrical revolution of the 
edges for the basic surfaces. The configuration treated is a manifold with two pipes. 

The interpolation was generalized by Gordon [332] to match out-of-surface 
derivatives as well. This was used in Eriksson [83] and Rizzi and Eriksson [230]. In 
this case, (H.3) is generalized to, in the three-step form, 
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Here the subscripts r’, etc. indicate partial differentiation. The blending functions 
now must satisfy 

This general form matches F(<, q, 4) with the specified values of f(<, q, t;) on the 
surfaces < = C, the surfaces q = qj, and the surfaces C = &. In addition the specified 
values of the first Li r-derivatives are matched on the surfaces r = &, the first ii4j r- 
derivatives on the surfaces q = qj, and the first Nk C-derivatives on the surfaces 
c = ck. Some of the blending functions may be taken to be zero, of course, in which 
case the corresponding derivatives on the corresponding surfaces are not matched. 
Eriksson and Rizzi and Eriksson used only the bounding surfaces to generate a coor- 
dinate system for a wing-body combination with certain out-of-surface derivatives 
specified. 

There is an extensive literature on transtinite interpolation, and the references cited 
here serve to introduce the subject in its relation to the generation of coordinate 
systems. One source of further material is [333]. 

3. Multisurface Transformations 

In the work of Eiseman [77], the interpolation is applied to a vector field of 
tangents, rather than to the coordinate vectors. These tangents are defined by the 
vector differences between positions on successive selected surfaces. The interpolant 
is taken to create a smooth vector lield of tangents from the differences, which are 
tangents to the lines connecting the successive selected surfaces and the boundaries. 
In 2-D, the surfaces are curves r{(r) and the smooth vector field is given by 

N-l 

v(t9 ‘I) = C Wi(rl) v(t9 Vi) (H-4) 
i=l 

with suitably smooth interpolation functions vi that satisfy wi(qj) = 6,j in order to 
pick out each tangent direction 

v(t, rli)rA,[ri+,(r)-ri(r)l W.5) 

in respective correspondence to points vi from a partition q, < q2 < a.. < 1 of q. The 
magnitudes Ai are determined so that boundaries are fitted when the vector field is 
integrated in q to produce coordinates. In terms of the coordinate vector r(<, q), the 
transformation is given by 

N-l 

where G,(r) is the integral of vi from q1 to q and where the magnitude of Ai is 
l/Gi(‘lN)* 

In the polynomial case on 0 ( r ( 1, N curves rr(<) are defined, consisting of the 
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inner and outer boundaries and possibly some control curves between them. Then 
N - 1 vector fields V,(r) are defined and a smooth vector field V(& q) is defined as 
an N - 2 degree polynomial in q, matching the VI)s at the points 0 = vi < qZ ... < 
qN- i z 1. This polynomial is then integrated over q and normalized to give the 
continuous coordinate field r(& r,r) given in general by Eq. (H.6). Note that r(<, q) 
does not necessarily equal any of the ri(<), except the inner and outer boundaries, for 
any value of v. N - 2 conditions can be specified on the boundaries in addition to the 
matching of the specified point distribution there. Thus with N = 4, derivatives at 
both boundaries may be specified. 

Conditions are obtained for N = 4 to have uniformly spaced coordinate curves in 
q, so that a subsequent transformation of rl can be used to cluster lines as desired. In 
addition, the coordinate curves parameterized by q leave the boundaries in a locally 
linear form and corresponding bounds on the extent of linearity are established. 

To resolve single attached boundary layers, the subsequent transformation used 
was the stretching function f(r) given in Eq. (L.1). It is suggested that the point 
maximum curvature (knee) of the funciton be placed at a specified distance from the 
inner boundary. This amounts to putting a specified number of lines in the boundary 
layer with uniformity over most of that region. The point distributions on the surfaces 
r[(l) are discretely done by polygonal arc length for uniformity, by parametric 
alignment for angle specifications, and by spherical-normal images for curvature 
clustering. With N = 4, the points on the two intermediate curves are determined by 
the fact that r2 - r, and r4 - r3 are the vectors defining the angle at which the coor- 
dinates leave the bounding surface. 

Some C-shaped examples are given as well as O-type. This procedure of Eiseman 
was applied to generate C-type systems for cascades by Shamroth et al. [241], and 
McDonald and Briley [ 1921, where a sharp trailing edge was treated by simply 
defining a normal direction to be perpendicular to the chord line. This is possible 
with the C-type system since the wake line emanating from the trailing edge is here 
taken to be a part of the boundary. Extension to 3-D can be made simply by 
replacing the curves with surfaces. This procedure was applied to 3-D finite wings in 
Eiseman [78]. In cases where boundary orthogonality is required in highly concave 
regions, singularities are prevented by the placement of an intermediate surface close 
to the concave boundary. The condition for coordinate uniformity in the q-direction 
can also be directly applied as in earlier cases, except that the partition point rZ 
cannot be fixed at f. Alternatively with q2 = 4, the scalar cubic uniformity 
relationship would have to be inverted. 

In Eiseman and Smith [80] it was noted that the four-surface form of this 
multisurface procedure can be expressed directly in terms of boundary point and 
derivative distributions and hence is equivalent to cubic Hermite interpolation as 
reported in Smith and Weigel [248]. In addition, the bounds on the extent of linearity 
in leaving boundaries also are equivalent to the ramp functions that were used by 
Kowalski [ 1601 to prevent the coordinates from overlapping. In Eiseman [74] and 
then in Eiseman [76] and Eiseman and Smith [80], the multisurface method was 
extended to use piecewise linear local interpolants, rather than polynomials, in order 
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to provide control over the local form of the coordinates. The controls can be used to 
restrict undesirable mesh forms or to embed desirable ones within a global system 
with continuous first derivatives. The second derivatives are, however, discontinuous. 
As examples, the propagation of boundary slope discontinuities can be arbitrarily 
restricted and general rectilinear Cartesian systems can be embedded to simplify 
problems over a large part of their domain. 

In a further development, Eiseman [74], extended the procedure to use piecewise 
quadratic local interpolants, thus achieving continuity of second derivatives, with 
discontinuous third derivatives. The conceptual extension to higher order piecewise 
polynomial local interpolants, with consequent higher degree of continuity, was also 
discussed. 

4. Other Methods 

Rizzi and Bailey [229] constructed coordinate systems for a wing body from a 
stack of deformed truncated cones with vertices lying within the body and with 
arbitrarily specified orientations and vector angles. The deformed cones were defined 
as the surface formed by the straight lines connecting points on two arbitrary closed 
curves in two parallel planes. A 2-D coordinate system on the deformed cones was 
generated by spacing points as desired on these straight lines. The 3-D system was 
then found by connecting the corresponding mesh points of all the deformed cones, 
the deformed cones being spaced so as not to intersect. 

A somewhat related construction was used by Kee and Miller [ 151 with circular 
coaxial cones. In this work, however, the cones do intersect, and the outer boundary 
is formed of segments of the conical surfaces between the intersections of the adjacent 
cones. The outer boundary thus is the piecewise continuous envelope of all the cones. 
The circular cone intersections form the circumferential coordinate lines, while 
straight lines connecting corresponding points on these circles form the other set of 
coordinate lines thereon. Normals to the axis supply the third set of coordinate lines. 

Walitt and Trulio [303] deformed a coordinate system formed as the stream 
function and potential lines for flow about a half circle (with a symmetry centerline) 
into a system fitted to an arbitrarily shaped half body of the same area as the half 
circle. This was done by placing an equal number of points on the half body and the 
half circle, determining the vector displacement between corresponding points on the 
two, and moving each mesh point in the grid about the half circle by this 
displacement according to the square of the radial distance from the center. 

Sankar et al. [236] added a fictitious fluid airfoil of very small, but finite, thickness 
and constant chord beyond the tip of a finite wing. The entire construction was then 
transformed to a rectangular plantform by a shearing transformation and was then 
unwrapped by a square root transformation about a line just inside the leading edge. 
A final shearing transformation flattened the wavy boundary corresponding to the 
wing and its extension. 
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I. TRANSFORMED PLANE CONFIGURATIONS 

Regardless of the generating system, there is a wide choice of the distribution of 
the physical boundary segments in the transformed plane. It is not required that 
physical corners be corners in the transformed plane; corners in the transformed 
plane may, in fact, correspond to points on smooth curves in the physical plane. In 
the latter case, the Jacobian vanishes at the point corresponding to a concave corner 
in the transformed plane. This point may be treated, however, with a local coordinate 
system if it is necessary to implement Neumann boundary conditions at this point (cf. 
[340] for a discussion of the treatment of this and other pecular points). The use of 
this point can be avoided in the field computations if desired by using the cross- 
derivative representation given in O’Carroll [210]. 

Successful calculations with such points have been reported by Middlecoff and 
Thomas [199], Young [329], McWhorter and Sadd [195], Goldman and Kao [334], 
and Hindman et al. [ 1301. Hindman et al., found no problems with the point on a 
bow shock, but did experience some irregularity in the solution with the point on a 
symmetry boundary. The corner was treated in this work by separate one-sided 
calculations of the value at the corner on each side, followed by averaging. 

With simply connected regions, the configuration in the transformed plane is 
generally somewhat similar to that of the physical field, i.e., the closed (possibly 
curved) physical boundary is transformed to the closed boundary composed of 
parallel and orthogonal straight segments in the transformed plane which is 
composed of horizontal and vertical straight line segments. The transformed plane is 
not required to be a simple rectangle-it can be composed of rectangular blocks as in 
Kumar et al. [ 1631 or it can have slits emanating from the sides. 

With multiply connected regions, the configuration in the transformed plane may 
be even more varied. The transformed field may be a simple rectangle with all of the 
physical boundaries (outer boundary and all interior boundaries) placed on segments 
of the boundary of the rectangle. A number of configurations for multiple bodies were 
given in Thompson et al. [288]. The TOMCAT code described in [288] provides a 
wide choice of such configurations. 

The O-type system provides good resolution near the interior body but can give 
undesirably close spacing at sharp corners. The C-type system gives essentially the 
same resolution near the body for airfoil shapes while avoiding this problem at the 
sharp trailing edge, and at the same time providing better resolution in the wake as 
noted in Steger [260]. The closely spaced lines near the cut cause the convergence of 
the iteration for the coordinate system in that region to be very slow. For this reason, 
and also to position the concentration of lines in the wake, Steger [260] and 
Thompson [285] have chosen to artificially fix the points on the cut as boundary 
points. Although this causes the metric coefficients to be discontinuous at the cut, the 
close spacing of the lines there reduces the error to a negligible amount. The C-type 
systems have also been used by Holst [ 1331. 

Several configurations of 3-D are discussed in Rizzi and Eriksson [230] for a 
wing-body combination, and it is noted that some line and/or surface singularities are 
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unavoidable in 3-D if a single block configuration is used. These geometric 
singularities can, however, be treated with proper integral formulation of the 
equations to be solved on the coordinate system. 

The construction of two single-block configurations for the wing body is described 
in Rizzi and Eriksson [230] and Eriksson [83], the coordinate system in each case 
being generated by transfinite interpolation between the bounding surfaces as 
discussed in Section H. In Eriksson, the wing body is treated with a C-type system 
folding around the wing leading edge and an O-type system encircling the wing tip. 
The body is a bump on a plane of symmetry. The wake behind the wing is a reentrant 
boundary, as is the plane outside the wake and wing tip. Points are specified on the 
wing and on the wake plane, on the outer boundary, and on the body and symmetry 
plane. Out-of-surface derivatives are also specified on the wing and on the wake 
plane. Boundary values on the downstream boundary and on the reentrant boundaries 
outside the wing-tip and on the plane ahead of the wing are not specified, but are 
given by the interpolation. This procedure introduces two artificial intersections of 
coordinate surfaces, one going downstream from the wing tip and another extending 
outward from the leading edge of the tip. A similar construction, but with an O-type 
system encircling the wing, is given in Rizzi and Eriksson [230]. 

Another possibility is to use a multiply connected region in the transformed plane, 
with the interior boundaries in the physical field becoming slits or slabs in the 
transformed field. A slit intersecting the outer boundary was used by Amsden and 
Hirt [5]. The slab-type system was used by Winslow [320]. Examples of slits for 2-D 
are given in Thompson et al [289], Drummond and Weidner [68], Kumar [ 1621, 
Pelz and Steinhoff [335], and for 3-D by Thames in Thompson et al. [290]. Three- 
dimensional applications are given in Coleman [50]. Some discussion of the 
appropriateness of the various configurations was given in Thompson [285]. In fact, 
the slabs can be generalized to be composed of rectangular blocks, rather than being 
simply rectangles. Examples of the use of slabs are given in Kumar et al. [ 1631, 
Johnson and Thompson [ 1491, Johnson [148], Thompson and Mastin [284], and 
Johnson and Thompson [ 1501. 

The use of this type of configuration can cause a convex corner in the transformed 
plane to correspond to a point on a smooth curve on a physical boundary. At this 
point the Jacobian is finite, but the metrics are discontinuous. The problem can be 
handled, however, in the same way as described above for the concave corner, and 
good results have been reported by Dow [67], McWhorter and Sadd [ 1951, Young 
[329], and also in Lee and Rubbert [ 1721, Lee [ 1701, and Lee et al. [ 1711 for 3-D 
transonic potential flow about wings and for 2-D transonic potential flow about 
airfoils. In the latter case, essentially the same results were obtained using the slab- 
type and O-type systems. Lee et al., also found essentially the same results for 
potential flow over a cylinder using distinctly different configurations in the 
transformed plane. In this case, the cross derivative is less of a problem and the more 
conventional four-corner representation serves as well, since the grid is much less 
distorted than in the case of the concave corner. 

A peculiar point can also be introduced by the slit transformation or with an 
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interior boundary on a portion of a side of the transformed plane. Here the problem 
is an ambiguity in the choice of adjacent points on the <-line, as well as discon- 
tinuities in the metric coefficients. Again a local coordinate system can be used for 
Neumann boundary conditions at the peculiar point. Representation of the cross 
derivative at adjacent field points can be the usual four-corner scheme. Good results 
with this type of peculiar point have been given in Thompson et al. [289]. 

Another possibility is the use of transformed fields that are composed of 
contiguous rectangular blocks as in Shanks and Thompson [244], Haussling and 
Coleman [ 1241, and Haussling [ 1231. This type of configuration has a singular point 
where the Jacobian is undefined. Difficulty with this point is avoided by placing it 
between coordinate lines. There remains an ambiguity in the representation of the 
cross derivative at the points on the cell containing the singularity. Smooth solutions 
in this region using either choice of point have, however, been reported in the above 
work and in Haussling and Coleman [ 1241 and Haussling [ 1231, with generating 
system (G.6). Haussling and Coleman used an H-shaped transformed field with four 
pairs of reentrant segments, while Haussling treated a tNo-body field using a pair of 
T-shaped transformed fields having six pairs of reentrant boundaries. Other examples 
of slit and H-shaped block configurations obtained with the system of (G.6) are given 
by Lugt [149] and by Coleman [52]. As shown by Coleman, it is possible with the 
H-shaped block configuration to obtain coordinate lines encircling a body near the 
body while having the gird be nearly rectangular away from the body. A listing of the 
code for slit and H-shaped regions is given. This amounts to embedding one coor- 
dinate system (the O-type system around the body) in a larger system. Configurations 
of this type can also be used to embed C-type or other type systems. A number of 
configuration possibilities are illustrated in [340]. This can be a very effective means 
of treating complicated configurations, with a coordinate system generated in each 
subregion that is appropriate to the simpler geometry therein. The GRAPE code of 
Sorenson [250], discussed in Section K, can be applied particularly well to this end. 
The multisurface transformation and transfinite interpolation, discussed in Section H, 
can also be effective in joining such coordinate systems. 

Sha et al. [239] used a block structure with unequal numbers of points in radially 
spaced blocks in order to maintain approximately constant cell size. 

The extension of the system of (G.6) to 3-D was made by Mastin and Thompson 
[ 1881. In Mastin and Thompson [187], a transformed field composed of three 
rectangular blocks was used. Here the center section has a pair of reentrant sides 
analogous to a 2-D O-type system. The four sides of the top section are reentrant 
with the top of the center section. This system was used in Mastin et al. [ 182). 

J. PATCHED SUBREGIONS 

One approach to generating coordinate systems for complicated regions, especially 
in 3-D, is to patch systems together at artificial boundaries in the physical region. 
Point distributions are specified on these artificial boundaries, and the coordinate 
system is generated independently within each subregion. The coordinate lines will be 



56 THOMPSON, WARSI, AND MASTIN 

continuous across the patch since the point distributions on the patches are to be 
specified. Unless, however, there is some provision in the generating system for 
control of the intersection angles at the boundaries, some first derivatives of the coor- 
dinates, and hence some of the metric coefficients, will be discontinuous at the patch. 
In any case, derivatives of some order will be discontinuous. This lack of continuity 
of derivatives may require special contrived boundary conditions at the patch in 
solutions of partial differential systems on the coordinate system. In particular, 
derivatives of any order require continuous coordinate derivatives of the same order 
for representation across the patch. If sufficient continuity is not present in the coor- 
dinate system, derivative representations must be one sided at the patch, with some 
sort of matching procedure to approximate the essential continuity of the solution at 
the artificial boundary. Even if continuity up to the highest order of derivatives in the 
equations to be solved on the field is present, the lack of continuous higher 
derivatives may introduce significant truncation error if the patch occurs in a region 
of significant solution gradients and the coordinate spacing is not small enough. 
Again it should be noted, however, that the use of discontinuous control functions 
reduces the smoothness of coordinate systems generated from elliptic systems to C’ 
even without patching. Such systems have been used successfully in a number of 
cases, however. 

The use of constant line spacing followed by smoothly stretched spacing is a 
simple form of patching where the spacing is continuous but the higher coordinate 
derivatives are not. This type of patch has had wide use for boundary layer-type 
flows. A recent example for potential flow is given by Chipman and Jameson [42]. 

Forsey et al. [86] noted some small irregularities in the physical solution at the 
patches in a transonic potential flow solution. These authors 
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insignificant in the region of the patch. In some of these, the coordinate line slope is 
continuous at the cut, but the higher derivatives are not. If this cut is made an 
artificial extension of the body, as is done in some conformal mapping, such as that 
of Caughey [31], the coordinate lines may be discontinuous at the cut unless the 
mapping is adjusted to preserve continuity. In the 3-D system given by Eriksson [83] 
the surface emanating from the wing trailing edge is treated as a patch rather than a 
branch cut, but with some derivatives specified also so that the metrics and their 
lower derivatives are continuous. 

Patching can introduce peculiar points where more than four subregions share a 
common boundary corner (cf. Forsey et al. [86]), but since the point is on a patch 
where special boundary conditions are already necessary, no additional problems 
necessarily arise. 

Patching was used in Schiff [238], Deiwert [65], Peery and Forester [215], 
Kowalski et al. [ 16 I], and in Hindman et al. [ 1301 to achieve alignment of the coor- 
dinate system with flow directions in several regions. In Peery and Forester, and in 
Kowalski et al. one family of coordinate lines was composed of parallel lines, so that 
slope continuity was guaranteed at patches crossing this set of lines. Continuity of 
first derivatives at the patch was apparently achieved by choosing the exponential 
stretching functions of this algebraic generation procedure to match spacings at the 
patch. There was discontinuity in first derivatives, however, at a patch along the 
parallel set of lines. Schiff used patches to treat a supersonic as a continuous flow 
field. The coordinate system in each subregion was generated using the elliptic 
generating system of (G.6), except for the outermost region where straight lines with 
equally spaced points thereon were used. Discontinuous derivatives also appeared on 
boundaries between regions. Deiwert used an inner finely spaced system near the 
body patched to a coarse system farther out, with uniform spacing in the inner 
system and a stretched distribution in the outer. The patches moved in time in all 
three of the above cases, so the coordinate system was regenerated at each time step 
within each subregion. 

Steger [259] patched a mesh generated with a elliptic generating system 
(Section G) with one generated algebraically using parallel straight lines as one set of 
coordinate lines (Section H). Here, the first derivatives of the coordinates are 
continuous at the patch, and higher derivatives could be matched as well with 
appropriately chosen stretching functions in the algebraic region. This system was 
applied by Nietubicz [208]. Chakavarthy [33] patched coordinate systems along a 
slip line of an inviscid transonic nozzle flow, with grid points moving along parallel 
straight lines normal to the axis to adjust to the slip line location. A second patched 
grid was also generated, composed of two orthogonal systems formed by incom- 
pressible streamlines and potentials patched at the slip line location from the first 
grid. 

Lombard et al. [ 1761 and Lombard et al. [ 1771 used a rather complicated patching 
of five subregions with slope discontinuities at the patches. This configuration results 
in one singular point formed by the intersection of five lines in the field where special 
treatment is necessary. A local coordinate system was constructed at this point 
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without regard to the line type in the same general manner as discussed above. 
Forsey et al. [86] used a number of patched subregions to treat inlet geometries and 
cascades, with metric discontinuities at the patches. 

Lee and Rubbert [172], Lee et al. [171], and Yu [331] considered patching for 
complicated 3-D regions, but few details or examples are given. Each subregion was 
taken to be simply connected, transforming to a rectangular block. For each 
subregion, the point distributions on the edges of the block were determined first by 
1-D solutions of an elliptic generating system as discussed in Section G. Then 2-D 
solutions were done on the faces of the block, using the results of the 1-D solution on 
the edges for boundary conditions there. Finally the 3-D solution was done in the 
block with boundary conditions provided by the 2-D results on the faces. It is not 
clear how the terms arising from the curvature of the line and surface in the 1-D and 
2-D solutions, respectively, were handled. Presumably the effect of curvature was 
neglected, since the only purpose of these solutions was to provide the boundary 
point distributions for the 3-D solution inside the block. Thomas [280] gives a 
similar procedure that does include the effect of the line and surface curvatures, 
subject to certain assumptions as discussed in more detail in Section K. 

Good results are shown in Lee et al. [ 1711 for the potential flow about a circular 
cylinder using live different mesh configurations. Good results are also reported for 3- 
D transonic potential flow about a wing body. Essentially the same results were 
obtained for 2-D transonic potential flow about an airfoil using the patched system 
and using an O-type system with no patching. Baker and Manhardt [ 121 patched 2-D 
and 3-D regions using biquadratic interpolation in terms of corner points and one 
point on each edge. The metrics are, of course, discontinuous at the patches. The 
multisurface transformation method of Eiseman [77] provides metric continuity at 
patch boundaries as applied by Shamroth et al. [241]. Eiseman [76] and Eiseman 
and Smith [80] give a procedure (discussed in Section H) for embedding a mesh 
structure, such as a Cartesian system in a curvilinear system with slope continuity 
everywhere which could be viewed as patching if internal boundaries were present. 
This procedure was extended to higher degree of continuity in Eiseman [74]. 
Patching with some continuous derivatives is also possible with translinite inter- 
polation (Section H). Sorenson [250], Sorenson and Steger [25 1 ] and Steger et al. 
[263] adjust the control functions iteratively in an elliptic system to achieve slope 
continuity at the patch, as discussed in Section K, with considerable success. 

Anderson and Spradley [9] and Spradley et al. [253] also treated complicated 3-D 
regions by patching, generating the coordinate system within each subregion by 
transfinite interpolation in terms of certain edge and surface elements as described in 
Section H. In both of these latter works, the metrics are discontinuous at the patches. 

The use of periodic subregions, as is common with turbine cascades, is also a form 
of patching. An example of this is the work of Ghia et al. [98] and Ghia and Ghia 
[96], in which the subregion was a simply connected channel between the blades, 
with patch boundaries emanating from the leading and trailing edges. The coordinate 
lines are continuous across the patch in the periodic arrangement but the derivatives 
and thus metrics are not. 
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Another approach to patching is to overlap subregions, using interpolation among 
the overlapping points of one grid to determine physical solution boundary conditions 
for another as the solution proceeds sequentially, or iteratively, alternating between 
the two subregions. This procedure was used by Knight [ 156, 1571. Viviand and 
Ghazzi [301] used a similar procedure but with constant spacing within each 
subregion, the spacing doubling from one subregion to the next. Starius [257] used 
two overlapping meshes to solve elliptic boundary value problems. An orthogonal 
curvilinear mesh is used near the boundary and a rectangular Cartesian mesh is used 
in the remaining part of the region. An SOR iteration scheme is used on each mesh 
with the boundary values in the overlap subregion supplied by interpolation. 

Atta [ 10, 1 l] used a curvilinear coordinate system surrounded by an overlapping 
Cartesian system. Boundary conditions for a physical solution were calculated by 
interpolation among the overlapping points of the other. Neumann boundary 
conditions were applied on the inner boundary of the Cartesian grid, while Dirichlet 
boundary conditions were used on the outer boundary of the curvilinear grid. Each 
grid is swept several times, the boundary conditions are updated, and the other grid is 
swept several times. This cycle is repeated until convergence. It was found that the 
region of overlap should cover 15-25 % of the curvilinear grid, the inner boundary of 
the Cartesian system should not be closer than 0.25 body diameters to the body, and 
that the accuracy was strongly dependent on the overlap configuration. It was also 
noted that improper interfacing conditions could produce spurious shocks. This 
points up the difficulty with using interpolation to calculate boundary conditions. 

Roberts [232] treated the problem of generating orthogonal coordinates for multi- 
element airfoils by constructing multiple coordinate systems. At each gap between 
airfoils a local orthogonal coordinate system was generated by constructing a 
conformal mapping of a small region containing the gap onto a rectangle. A single 
airfoil was then defined by joining upper and lower airfoil surfaces across the gaps of 
each pair of elements. The region about this single airfoil was mapped onto another 
rectangular region. The regions at the gaps were chosen to overlap the region about 
the single airfoil. When solving a flow problem, interpolated values from the single 
airfoil region were used to assign boundary values on the gap reglons. Conversely, 
the solution in the gap regions provide normal derivative data for the single airfoil 
region. This technique of generating grids for multi-element airfoils has the property 
that the leading and trailing edges of each component have a high concentration of 
grid points. It does, however, introduce the new problem of interfacing the solutions 
in the various computational regions. 

K. COORDINATE SYSTEM CONTROL 

In this section the control of the coordinate line distribution in the field for coor- 
dinate systems generated from partial differential equations is considered, particularly 
with regard to systems of the class of (B.22) discussed in Section G. The 
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redistribution of lines by algebraic stretching functions, a procedure applicable to 
coordinate systems generated by any means, is covered in the next section. 

Control of the coordinate line spacing in the field, and on the boundary if 
Neumann boundary conditions are imposed, can be exercised through the nonzero 
values given to the Laplacian of the curvilinear coordinates as in (B.22). With a zero 
Laplacian the lines tend to be closely spaced near convex segments and more widely 
spaced near concave segments. A negative value of the Laplacian causes the lines to 
move toward lower values of the curvilinear coordinate. 

1. Attraction to Coordinate Lines/Points 

This effect was utilized by Thompson et al. [288] to achieve attraction of coor- 
dinate lines to other coordinate lines and/or points by taking the form of the control 
functions to be 

PC& rt) = - jj ai sign(t - tj) eXp(-Ci 1 t - (ii I) 
i=l 

- 2 bj sign(<-- rj)exp{-dj[(<- rj)’ + (V - ~lj)*l~‘*l 
j=l 

(K.1) 

and an analogous form for Q(<, q) with r and r interchanged. This type of control is 
provided in the TOMCAT code, and its effect is illustrated in Thompson et al. [289] 
and Thompson et al. [288]. The efficacy of control to improve the accuracy of a 
physical solution done on the coordinate system was shown in the former. Additional 
examples of the use of this type of control function are found in Ghia et al.. [99], 
Coleman [52], Roberts and Forester [233], Kumar [162], Haussling and Coleman 
[124], and Haussling [123]. 

In the P function, the effect of the amplitude a, is to attract l-coordinate lines 
toward the &line, while the effect of the amplitude b, is to attract r-lines toward the 
single point (&, vi). Note that this attraction to a point is actually attraction of c- 
lines to a point on another t-line, and as such acts normal to the <-line through the 
point. There is no attraction of r-lines to this point via the P function. In each case 
the range of the attraction effect is determined by the decay factors ci and di. With 
the inclusion of the sign changing function, the attraction occurs on both sides of the 
c-line, or the (&, vi) point, as the case may be. It should be noted that P and Q are 
discontinuous because of the sign function and are equal to sums of second 
derivatives. As a consequence, the coordinates have continuous first derivatives but 
discontinuous second derivatives at controlled locations. Without this function, 
attraction occurs only on the side toward increasing <, with repulsion occurring on 
the other side. A negative amplitude simply reverses all of the above-described effects, 
i.e., attraction becomes repulsion and vice versa. The effect of the Q function of v- 
lines follows analogously. 

In the case of a boundary that is an q-line, positive amplitudes in the Q function 
will cause q-lines off the boundary to move closer to the boundary, assuming that g 
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increases off the boundary. The effect of the P function will be to alter the angle at 
which the r-lines intersect the boundary, since the points on the boundary are fixed, 
with the r-lines tending to lean in the direction of decreasing {. If the boundary is 
such that q decreases off the boundary, then the amplitudes in the Q function must be 
negative to achieve attraction to the boundary. In any case, the amplitudes a, cause 
the effects to occur all along the boundary, while the effects of the amplitudes bi 
occur only near selected points on the boundary. 

2. Attraction to Lines/Points in Space 

If the attraction line and/or the attraction points are in the field, rather than on a 
boundary, then the attraction is not to a fixed line or point in space, since the 
attraction line or points are themselves solutions of the system of equations, the 
functions P and Q being functions of the variables < and 9. It is, of course, also 
possible to take these control functions as functions of x and y, instead of r and r, 
and achieve attraction to fixed lines and/or points in the physical field. This case 
becomes somewhat more complicated, since it must be ensured that coordinate lines 
are not attracted parallel to themselves. The following development is from 
Thompson and Mastin [284]. 

Recall that in the above discussion, q-lines are attracted to other q-lines, and <- 
lines are attracted to other r-lines. It is unreasonable, of course, to attempt to attract 
q-lines to <-lines, since that would have the effect of collapsing the coordinate system. 
When, however, the attraction is to be to certain fixed lines in x - y space, defined 
by curves y = f(x), care must be exercised to avoid attempting to attract rj or C lines 
to specified curves that cut the q or < lines at large angles. 

In the general situation, the specified linef(x) will not necessarily be aligned with 
either a r or v line along its entire length. Since it is unreasonable to attract a line 
tangentially to itself, some provision is necessary to decrease the attraction to zero as 
the angle between the coordinate line and the given line f(x) goes to 90’. This can be 
accomplished by multiplying the attraction function by the cosine of the angle 
between the coordinate line and the linef(x). It is also necessary to change the sign 
on the attraction function on either side of the line f(x). This can be done by 
multiplying by the sine of the angle between the linef(x) and the vector to the point 
on coordinate line. 

These two purposes can be accomplished as follows: Let a general point on the r- 
line be located by the vector R(x, v), and let the attraction line y = f(x) be specified 
by the collection of points S(x,, yi), i = 1, 2,..., n. Let the unit tangent to the 
attraction line be t(xi, vi), and the unit tangent to a r-line be 2(l). Then the sine and 
cosine of the angle between the r-line and the attraction line may be written as 

sin = [ti X (R - S,)] * k/] R - Si], cos = t. . ,Y L I 7 

where k is the unit vector normal to the two-dimensional plane. The control functions 
P(x, v) and Q(x, y) may then be logically taken as 
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-, \ A , _.- - 
P(X, v) = - 2 Ui(ti ’ T(l)) 
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exp(--d, 1 R - Si 1) 
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I 
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These functions depend on x and y through both R and r(l) or T’~), and thus must be 
recalculated at each point as the iterative soution proceeds. This form of coordinate 
control will therefore be more expressive than that based on attraction to other coor- 
dinate lines. 

There is no real distinction between line and point attraction with this type of 
attraction. Line attraction here is simply attraction to a group of points that form a 
line f(x). If line attraction is specified, then the tangent to the line f(x) is computed 
from the adjacent points on the line. If point attraction is specified, then the tangent 
must be input for each point. The tangents to the coordinate lines are computed from 

T.(I) - - g$‘*@, +b,), T.(v) - - g,“*(ix, + ba). W-3) 

The above forms of the control functions may be implemented in either (G.6) or 
(G.lO). In the latter equation the magnitudes of the amplitudes will be several orders 
magnitude smaller for a similar effect as in the former. 

3. Automation of Control 

Control techniques such as those given above provide the means to move the coor- 
dinate lines around but do not provide any direction as to the proper amplitudes and 
decay factors necessary to achieve desired spacing distribution. These techniques thus 
are not automatic and require interaction from the user. 

Hodge et al. [ 1321 and Ghia et al. [ 1001 give a procedure for automating the 
choice of the amplitudes a, in the control function given by the first summation in 
(K.l), with the other function set to zero. These amplitudes were determined by a 
Newton-Raphson iteration so that the line spacing would be such as to render a 
specified 1-D variable distribution linear in the curvilinear coordinate along a given 
coordinate line on which the other coordinate is constant. Some control was also 
exercised over the rate of change of the spacing in order to prevent the excessive trun- 
cation error which can result therefrom as discussed in Section 0. This procedure was 
applied by Hegna [ 1271. 

In a major effort toward automation, Sorenson and Steger [25 1 ] and Sorenson 
[250] take the form of the control functions of (G.6) to be 

fYL r> = P@ ew(-arl) + r(O exp I-c(tl,,, - r)l 
Q@L r) = 4(t) exp(-W + 40 exp Wh,, - ~11. 

W.4) 

With the desired intersection angle at the boundary and the spacing of the first line 
off the boundary specified at each boundary point (and with a priori choices for the 
decay factors), the code determines the values of the functions of r in the control 
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functions automatically as follows: Specification of the intersection angle and first 
line spacing at the boundary points determines x, and y, at each boundary point, 
values of xI and y, being known from the boundary point distribution. Since xl,, and 
yr,, can then be determined at each boundary point, and xII and yrs are known from 
the boundary point distribution, it remains only to determine x,, and y,, at each 
boundary point in order to evaluate the functions of r in (K.4) at each boundary 
point. With assumed values for these functions, system (G.6) is solved on the field. 
Values of x,, and y,, at each boundary point are then determined from this solution 
on the field, and new values of the functions of < are calculated at each boundary 
point. This process is repeated until convergence. The procedure wasspeeded up by a 
factor of 15 by converging first on a coarse grid to produce an initial guess for the 
functions of <. This is a generalization of the earlier work of Steger and Sorenson 
[264] in which the intersection angle was zero and the spacing of the first line off the 
boundary was uniform over the boundary. The sensitivity to the large values of the 
control function noted in this earlier work could possibly be reduced by using (G.lO) 
instead of (G.6) as the generating system. 

Since the angle of intersection at the boundary points can be specified, this 
technique can be applied to patch grids together without slope discontinuities at the 
patch provided the boundary has no slope discontinuity. This procedure also allows 
elliptic systems to generate coordinates for periodic cascades with slope continuity in 
contradiction to the statement of Caspar and Verdon [30] to the contrary. This code, 
called GRAPE, is being made available by NASA through its COSMIC library, and 
is applicable to both C- and O-type grids. This procedure was used in Steger et al. 
[263] and in Srinivason et al. [256], where 2-D coordinate systems were stacked 
spanwise on a wing spanning a tunnel. Holst and Brown [ 1351 incorporated this code 
as a part of a dynamically adaptive grid generation procedure discussed in Section M. 
This code should be very effective in treating complicated regions by embedding 
appropriate coordinate systems for simpler subregions into larger systems. 

4. Control Functions from Boundary Point Distributions 

With the Laplacians of the coordinates equal to zero, the line spacing in the field 
will not be greatly affected by the distribution of the boundary points, except very 
near the boundaries. In fact, as noted in Ghia et al. [ 1001, if the control functions are 
not consistent with the boundary point distribution very large changes in the metric 
coefficients will occur near the boundaries. Values of the control functions may be 
determined from the 1-D boundary point distribution such that the line spacing in the 
field will generally follow that on the boundary. This concept was introduced in 
Warsi and Thompson [3 121 and applied in Shanks and Thompson [244], Middlecoff 
and Thomas [ 1991, Thompson and Mastin [284], and generalized to 3-D in Lee and 
Rubbert [172], Leeetal. [171], Yu [330], and Thomas [280]. In the use of either 
control functions or stretching functions that are l-D, however, it should be noted 
that excessive concentration of lines can occur near sharp convex corners. The 
deleterious effect of this has been noted in Gnoffo [ 1041, where the mesh spacing at 
an expansion corner was reduced below the mean free path of the gas. 

581/47/l-5 
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All of these works used (G. 10) as the generating system. With (G. 11) evaluated in 
1-D on a straight q-line coincident with the x axis we have, since x, = ys = 0 in this 
case, 

g22xtt = -g22fw Xl. tw 

The reason for the choice of the form of the right side of (G. 10) becomes clear, since 
g,, cancels from this equation to leave 

Thus the control function P(r) can be determined from the specified boundary point 
distribution x(r). Generalizing, x is replaced by arc length along the q-line and the 
effect will be qualitatively the same when this line is curved. 

If this value of the control function is then used throughout the field, the r-line 
distribution in the field will generally follow the specified distribution of the end 
points of these lines on the boundary. With different point distributions on two boun- 
daries, values of the control function P(<, II) in the field between can be determined 
by 1-D interpolation in q between the values determined in the above manner on the 
two v-line boundaries. An analogous development applies for the determination of the 
control function Q(& q) from interpolation in r between 1-D evaluations on two r-line 
boundaries. This interpolation was introduced by Middlecoff and Thomas [ 1991 in a 
2-D coordinate system and used by Yu [330] for a 3-D system applied to a wing 
body. Obviously, this procedure could be extended to 1-D interpolation in q among 
values on a set of r-lines on each of which the control function is determined as 
above, there being no necessity for these q-lines to actually be boundaries. In Lee 
[ 1701, such interpolation was used not only for the control function, but also for the 
coefficients, i.e., the gii’s, of (G.l4), so that a linear system was solved for the coor- 
dinates. 

In Thompson [285] and Thompson and Mastin [284] this approach was modified 
by using the solution along a radial line connecting two concentric circles, rather 
than a 1-D solution, to determine the control functions. In this case a closed-form 
solution of (G. 11) may be found with the control functions given by 

where s is the arc length along the circular boundary and r is radial distance, the II- 
lines being concentric circles and the c-lines being rays. Again the effect will be 
qualitatively the same if these relations are applied to more general regions, perhaps 
with 1-D interpolation as described abive. This form of the control function Q takes 
some account of the fact that lines tend to concentrate near convex boundaries even 
with zero Laplacians, hence the control function given by (G.lO), which will be 
smaller in magnitude than that given by (G.6), is more appropriate for multiply 
connected regions with both O-type and C-type coordinate systems. This procedure 
was used in Reddy and Thompson [226]. 
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In Ghia and Ghia [96] the approach is reversed; the control function is specified 
as a function of one variable, and the 1-D equation from the coordinate generating 
system is integrated to get the boundary point distribution. The form of the control 
function is a sum of exponentials of the form discussed above for point attraction 
(K.l) except that the square of the separation is used in the exponential argument. 
The applications here are to cascades, 180° bends and breaking surface waves, the 
latter having strongly distorted boundaries. Equation (G.6) was used as the 
generating system, so that the 1-D equation becomes 

XII = -P(r) x; * W.8) 

This equation is then integrated to obtain x(c). Again arc length is to be inferred for x 
in the generalization. Here again, the advantage of the form of (G.lO) over that of 
(G.6) is evident, since the integration of the former yields a much simpler function. 

Roach and Sankar [231] evaluated the control function Q for (G.6) from the 
analogous form of (K.8), with e replaced by q and x replaced by y. This involves the 
assumptions that y, =x, = y,, = 0 in (G.6). Roach also evaluated the other control 
function P from (G.6) using only those same assumptions, together with the 
derivatives of g,, equated to zero, g,, being zero everywhere. The result for P can 
then be written 

p = -w% - x&,)/x: &. W.9) 

This evaluation of P has the effect of maintaining a degree of orthogonality in the 
system, even though the actual application is to 2-D and the assumption used in the 
derivation of P, Q are not actually imposed. The specified boundary point 
distribution was used to evaluate Q, while P was continually updated from (K.9) after 
each iterative sweep of the field. A similar attempt at determining the control function 
at the boundary to enforce orthogonality thereon was made by Ghia et al. [ 1001. 

Knight [ 1561 used system (G.lO) with P = 0 and Q a step function in q, i.e., 
constant near the boundary, zero farther away. It is clear from (G.lO) that this step 
in the control function must result in a discontinuity in some derivatives at the step, 
with significant truncation error being introduced in accordance with (0.4), since the 
difference expression for the second derivative of the coordinates can be expected to 
be rather large at the step. The use of a constant value in a boundary layer region is 
in accordance with the type of control function typically produced by (K.7). This 
equation, however, gives a smooth function throughout the field. The discontinuity in 
the control function is similar to that which appears in (K.l). In the case of (K. l), 
however, the discontinuity appears in the region where the coordinate lines are 
attracted and thus the effect on truncation error is minimal. 

Thomas [280] generalized these concepts as follows: With (G.11) in the vector 
form 

g2Ara + firI - %,,r,, + g,,(r,, + Qr,> = 0. 
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The projection of this equation on a boundary line of constant 11 is obtained as the 
scalar product with rI. If it is assumed for the moment that the system is orthogonal 
on the boundary, then rl . r, = 0 and this scalar product yields the following relation 
for the control function P(r) on the q-line: 

PC3 = 4~0 + lrtl r,> 

with 

To - (rl . r~J/l~112~ *I = (r* * ?pJlrll lr,12. 

Here T, is the logarithmic derivative of the arc length along the boundary with 
respect to C& and T, is the local curvature of the transverse r-lines on the q-line. 

In the procedures discussed above, this latter term was dropped, implying the 
assumption of zero curvature of the transverse coordinate lines. Thomas retains the 
curvature term, using linear interpolation in arc length between the two ends of the 
boundary line where the curvature can be evaluated using one-sided derivatives in 
both coordinate directions. With the {-derivatives evaluated on the boundary line 
from a specified point distribution thereon, the above relations allow P(r) to be deter- 
mined on this boundary line. A similar evaluation is then performed on the other q- 
line boundary, and values of the complete control function P({, q) in he field are 
obtained by linear interpolation in v between these two boundaries. An analogous 
procedure using the two t-line boundaries yields the other control function Q(<, q). 

The control functions thus are determined completely from the boundary point 
distribution on the four bounding lines of the field, assuming orthogonality on the 
boundary and interpolating the transverse curvature between the two ends of the 
boundary. It should be *realized that these assumptions are employed only to 
determine the control functions and are not enforced on the solution of (G. 11) using 
these functions. 

This procedure is extended to evaluate the control functions for a 3-D region from 
values of the coordinates on boundary surfaces by assuming for the moment that the 
coordinate lines emanating from the surface are orthogonal to the surface and that 
the coordinate lines on the surface are orthogonal. Equations analogous to those 
given above result, necessitating the evaluation of the curvature of the transverse lines 
emanating from the surface by interpolation between the sides of the surface where 
one-sided derivatives can be used along the known transverse lines on these sides. 
This procedure defines the control functions P(& q) on a surface of constant [ and 
P(& 0 on a surface of constant q. The values of the complete control function 
P(& q, [) in the interior are then determined as the analytical solution of the equation 

P rlwx =o 

on each c-surface, using these surface functions as boundary conditions on the boun- 
daries of constant q and those of constant [. (This amounts to bilinear transfinite 
interpolation of the edge values on each r-surface onto that surface.) Analogous 
procedures determine the other two control functions in the field. In this manner the 
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3-D control functions in the field are completely determined by the point distribution 
on the six bounding surfaces of the field, assuming, for the purpose of this deter- 
mination, that the coordinate lines intersect the bounding surfaces orthogonally. This 
assumption, however, is not enforced on the solution for the coordinates in the field 
using these functions. 

One further extension is made to incorporate the effect of the boundary surface 
curvature into the determination of the point distribution on these surfaces. Thus if it 
is assumed for the moment that the transverse coordinate lines emanating from a 
boundary surface are orthogonal to the surface and also that these lines have zero 
curvature at the surface, then the full 3-D equations for the coordinates reduce to 
(G.11) with the addition of inhomogeneous terms reflecting the known local 
curvature of the boundary surface. 

This entire procedure thus determines the 3-D control functions from the 
specification of the point distribution on the eight (curved) edge lines of the 3-D 
region through the following series of steps: First, the control functions are evaluated 
on each edge of each of the six (curved) bounding surfaces and are interpolated 
between the edges on each surface. Then the 2-D elliptic system is solved on each of 
these six surfaces to produce a point distribution on each surface. The control 
functions on each surface are then reevaluated from these point distributions on the 
surfaces and are interpolated into the 3-D region. The 3-D elliptic system is then 
solved for the point distribution in the region. The various assumptions made in the 
determination of the control functions are not imposed on this final solution and 
therefore do not degrade its accuracy or usefulness. 

L. STRETCHING FUNCTIONS 

The use of stretching functions to distribute the curvilinear coordinates as desired 
is common to all types of coordinate generation. A curvilinear coordinate system 
x(<, q) and y(& q) generated by any procedure, can be rearranged by a transformation 
of each curvilinear coordinate u = o(r), r = t(v) so that the system becomes x(u, r) 
and y(a, t). This transformation of the curvilinear coordinates can be chosen such 
that equal increments of u and r will give the desired line spacing. In the following 
discussion, the functions are given such that the inverval (0, 1) is transformed onto 
the same interval. Appropriate scaling can be applied to both the argument and the 
function for application to any desired intervals. 

Roberts [234] has used a normalized hyperbolic tangent to concentrate the lines 
near a boundary in a boundary layer region, and Eiseman [SO] has generalized this 
to make the concentration locally uniform. The general function can be stated as 

f(r) = Cq + (1 - C)[ 1 - (tanh D( 1 - q)/tanh O)], (L.1) 

where D and C are free parameters. The parameter C controls the uniform spacing, D 
controls the size of the uniform region. The form used in Roberts and in several of 
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the applications cited below is obtained by relating the parameter D to a parameter B 

by 

D = ; log((B - l)/(B + 1)) (L-2) 

and by setting C to zero. This type of function was used in Vigneron et al. [296]; 
Gibeling et al. [ 1021, Eiseman [75], Kutler et al. [ 1641, Daywitt et al. [63], 
Drummond and Weidner [68], Tannehill et al. [272], Chang [35], and McDonald 
and Briley [ 1921. 

Vinokur [298] developed criteria for stretching functions from a consideration of 
error bounds discussed in Section 0. It is shown that the hyperbolic tangent function 
is best when points are to be concentrated at one or both ends of a line, and that the 
hyperbolic sine is best for concentration in the middle. The former is equivalent to the 
function used by Roberts [234], and the latter to that used by Thomas et al. [282]. It 
is noted that the hyperbolic tangent function was used earlier by Mehta and Lavan 
[ 1961. The error function was found to be satisfactory for concentration at ends, but 
not to the same degree as the hyperbolic tangent. Furthermore, the error function is 
not invertible and thus is not as convenient to apply. It is noted that the simple 
exponential stretching functions, that are in common use, are adequate only when the 
minimum spacing is not too small, i.e., when the derivative of arc length is not much 
less than unity. Procedures for application of the chosen stretching functions are 
given. Some approximate solutions of some nonlinear equations involved in the deter- 
mination of parameters to achieve a desired minimum spacing with the hyperbolic 
tangent function are also given. 

Thompson and Thompson [29 1 ] evaluated several stretching functions for use in 
determining the control functions for an elliptic generating system in the manner 
discussed in Section K. This evaluation was made by qualitatively examining the rate- 
of-change of spacing produced for a given minimum spacing and also from some 
performance tests in applications of the coordinate system to flow solutions. Again 
the Roberts form was favored. Among the other forms considered were patched 
functions joining a polynomial to a distribution designed to place points at equal 
velocity increments from a boundary layer profile as discussed in Section K. 

Viviand and Ghazzi [301] used a cubic stretching function. Deiwert [64] used a 
geometric progression. Smith and Weigel [248] used exponential functions to concen- 
trate lines near one boundary, while Kowalski [160] used similar functions with 
concentration near boundaries on both ends of a line. Exponential functions have 
been widely used by many authors, among which are Horstman et al. [ 1371, 
Drummond and Weidner [68]. Forsey et al. [86] used a cubic stretching function for 
attraction to one boundary and a cubic spline for attraction to two opposing boun- 
daries. In the latter case of two boundaries, the single cubic gave too sudden a change 
to wider spacing in the middle of the region. The stretching functions were modified 
interactively, using a graphics terminal, to remove sudden changes in spacing. 
Tannehill et al. [27 I] used a logarithm function given by Moretti and Salas [205] to 
concentrate lines near both a body and a bow shock. Pierson and Kutler [ 2161 used a 
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finite Chebyshev series with coefficients determined to minimize a measure of the 
truncation error in a 1-D application. 

Carter et al. [29] have given a transformation appropriate in a laminar sublayer as 
well as throughout a turbulent boundary layer. This transformation also spaces the 
points at equal velocity increments on a boundary layer profile. The profile is a 
composite formed by joining an expression for the inner region adjacent to the 
boundary with another expression farther out. The inner profile is an inverse tangent 
function and has the proper behavior in the laminar sublayer as well as in the inner 
part of the boundary layer. The outer profile is the square root of a hyperbolic 
tangent and closely fits the Blasius solution in the outer portion of the boundary 
layer. The juncture is formed using concepts from the method of matched asymptotic 
expansions. This transformation is adaptive, depending on the local skin friction and 
the local maximum value of the turbulent eddy viscosity. 

Oh [211] gives a transformation based on sums of complimentary error functions 
that allows concentration of lines in several regions. This function can be stated as 

f(rl)=~~Piui l+fc [-~]+-&v[-($1 
+yerfc [?I---&exp[-(y)‘] 1 

+$ PO-+- ,f [s&nh)+ 1lPi/9 
I I-1 

where Q is a normalizing factor equal to f( 1) with Q removed. The vi (i = 1, N) are 
the locations of the local maxima of the rate-of-change of the spacing. The ai control 
the width of the region around the vi within which most of the spacing variation 
occurs. Positive (resp. negative) a, cause the spacing to decrease (resp. increase) with 
v at q,. The /Ii control the amount of spacing change occurring across the region 
around the vi. The points vi can be made to fall at specified values ofJi by solving a 
set of N simultaneous linear equations for the /I*. 

Godunov and Prokopov [ 1081 applied stretching transformations to a coordinate 
system generated from Laplace equations. In the related approach of Sorenson and 
Steger [251], a preliminary coordinate system is first obtained as the solution of the 
Laplace equations, and arc lengths along lines emanating from the boundary are then 
calculated. A new arc length distribution is then determined by an exponential 
stretching transformation such that the arc length to the first point off the boundary 
equals a specified value, while maintaining the same total arc length. (In this work 
the same minimum arc spacing was used for all lines.) The coordinates are then 
redistributed along. these lines of the preliminary coordinate system by interpolation 
according to arc length. As noted in Section B, the resulting coordinate system is the 
same would have been produced as the solution of the generating system, (B.26), with 
1-D control functions. A listing of the code is given. This procedure was used in 
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Chaussee and Pulliam [37], Steger [260], King and Johnson [153], Birignen and 
McMillan [20], and apparently in Steger and Bailey [261]. 

A similar procedure was used by Chyu and Davis [47], except that the stretching 
functions are varied around the body. Just what form this variation takes is not 
specified. The boundary points on the airfoil are distributed according to cosine 
functions, with concentration at an assumed shock location, as well as at the leading 
and trailing edges. Since two cosine distributions were joined at the assumed shock 
location, apparently only the first derivatives are continuous at that point on the 
airfoil. Since an elliptic generating system was used, however, this discontinuity in 
higher derivatives does not propagate into the field. 

Holst [ 1341 also used the exponential stretching procedure of Sorenson and Steger 
to redistribute the points along the lines emanating from the body in an O-type 
system. The desired spacing at the first point along these lines was specified at the 
leading and trailing edges and at one point between, and the values at remaining 
points were calculated by interpolation among these three points. Good results were 
obtained for transonic potential flow about airfoils. 

Visbal [299] used an exponential distribution on each end matched to an equally 
spaced distribution between for the boundary values and for the determination of the 
control function for an elliptic generating system. Although the elliptic system does 
not propagate the discontinuities of the second derivatives in the boundary values into 
the field, the discontinuities in the control function do result in discontinuities in the 
higher derivatives in the field. 

In order for an orthogonal coordinate system to remain orthogonal after a 
stretching, the stretching transformation functions must be l-D, as noted by Mobley 
and Stewart [202] and Adamczyk [2]. It was noted in Section B that this conclusion 
means that any 2-D orthogonal system can be generated by 1-D stretching 
redistribution of ( and ~7 values from an orthogonal system generated as a solution of 
Laplace equations. 

Kowalski [ 1601 used several 1-D matched geometric progressions for the boundary 
point distributions along one type of coordinate line on a 2-D boundary surface. A 
scale factor in the progression was varied linearly along the other type of coordinate 
line. Smith and Weigel [248] and Eiseman and Smith [80] used tension splines for 
the boundary pint distributions. McCartin [ 1901 advocates the use of exponential 
splines as stretching functions in the interest of smoothness, especially with curves 
having discontinuities or very large curvatures. Procedures are given for the deter- 
mination of such splines. The statement that a boundary-conforming computational 
mesh will propagate boundary discontinuities into the field is not true in general since 
elliptic generation systems do not suffer from this problem. Ives and Menor [ 1451 
used cubic splines as the stretching functions applied to a conformal mapping of an 
inlet-centerbody configuration and tailored the functions to be applicable to a wide 
range of geometries. 
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M. ADAPTIVE COORDINATE SYSTEMS 

Often a computational coordinate system must do more than eliminate the problem 
of dealing with irregular boundary components. It may be necessary to resolve large 
variations in the solution of the equations which are being solved. This is the case for 
the solution of fluid flow problems involving boundary layers or shocks. In these 
problems the distribution of mesh points is chosen to more accurately resolve the 
derivatives of the solution with respect to the computational variables. Choosing the 
proper distribution of mesh points is further complicated by the fact that skewness of 
coordinate lines and rapid changes in coordinate line spacing can lead to 
deterioration in the order of accuracy of a numerical scheme as discussed in 
Section 0. 

Procedures for controlling the distribution of coordinate lines in the field through 
control functions in an elliptic generating system were discussed in Section K, and 
stretching functions for redistributing the lines of any system were covered in 
Section L. In these sections, procedures for automating the control from some a priori 
knowledge of the physical solution were considered. The present section treats the 
dynamic coupling of the coordinate generating equations with those for the physical 
solution so that the coordinate lines respond to developing gradients in the solution. 
Most of the discussion is with regard to coordinate systems generated from elliptic 
equations (cf. Section G) with control functions as discussed in Section K. 

Maria-Sube [ 18 l] treated a steady free-boundary problem by iteratively adjusting 
the free-boundary location, and hence the coordinate system, between successive 
iterations of the physical solution. This was not a time-dependent coordinate system, 
of course; rather, the flow solution and coordinate system were obtained separately, 
with an outer iteration coupling the two. 

Warsi er al. [3 1 l] concentrated coordinate lines in a bow shock by making the 
attraction amplitude in the control function for point attraction, (K.l), used with the 
elliptic generating system (G.lO) dependent on the density gradient across the coor- 
dinate line. In this time-dependent flow solution, the coordinate system was 
regenerated at intervals after a specified number of time steps. Solution values at the 
coordinate points were not changed from the old to the new system, which amounts 
to an approximation, and time derivatives of the coordinates were not included in the 
flow solution equations. Therefore, this does not represent the use of a true time- 
dependent coordinate system. Problems were encountered with undesirable expansion 
of the coordinate lines near the body as the lines concentrated in the shock region. 

Another example of the use of an adaptive mesh that is not truly time dependent is 
in Peery and Forester [215] and and Kowalski etal. [161], where patch boundaries 
moved to follow dividing streamlines of several confluences. Here one set of coor- 
dinate lines consisted of parallel straight lines. The points on the dividing streamlines 
moved along these straight lines in response to the component along these straight 
lines of the velocity normal to the current approximation of the dividing streamline. 
The points between the dividing streamline were then redistributed on the straight 
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lines according to stretching functions. The coordinate system was then regenerated 
after each time step of the flow solution. As in Warsi et al. [ 3 111, however, coordinate 
time derivatives were not included in the flow solution equations and no mention is 
made of adjustment of the solution values after movement of the mesh points. The 
authors note, therefore, that the solution scheme is not time accurate. Similarly, 
Deiwert [65] had a patch boundary move to follow the minimum velocity line in a 
wake, and Chakravarthy [33] used a slip line of a transonic nozzle flow in such 
manner. Rakich et al. [225] made step changes in the stretching parameters at 
selected time steps to concentrate lines progressively closer to a boundary. Kee and 
Miller [ 1511 generated the coordinate system in the course of a marching solution 
down the axis of a reacting jet. The outer boundary location at each successive axial 
station was determined from the jet solution at the preceding step such that gradients 
at the outer boundary were kept within bounds. 

Robertson et al. [235] treated a deforming channel wall by moving the wall 
boundary, and hence regenerating the coordinate system, after each time step of the 
physical solution. The time derivatives of the metrics, however, were not included in 
the difference equations for the physical solution. The primary objective was the 
steady-state solution, and this omission introduces no error in that case, the time 
steps being simply equivalent to iterative steps. 

An alternative to moving the grid lines to achieve the necessary resolution is to 
refine the mesh where the gradients of the solution are large. This procedure was 
employed by Hurley and Linback [ 14 1 ] in the solution of the 2-D heat equation on a 
square region. A fixed coarse grid is constructed over the entire region. Then at 
selected time steps every coarse grid cell is refined whenever the gradient of the 
solution exceeds some preassigned value. Interpolation is required when a mesh 
refinement is made. No details on the interpolation are given, but the work of Brandt 
[23] has proven that interpolation procedures can be defined which maintain the 
accuracy of the solution. The complexity of interpolating between liner and coarser 
meshes and of interfaces between meshes of different fineness has of the liner grids. 

In Pierson and Kutler [216], a 1-D solution is given in which the coordinate line 
spacing is adjusted to minimize a measure of the error in the least-squares sense.The 
grid is generated algebraically as a finite series of Chebyshev polynomials with the 
coefficients determined by nonlinear programming to accomplish the minimization 
subject to bounds on the spacing. The measure of the truncation error used was the 
difference expression of the third derivative of a solution variable with respect to the 
coordinate, e.g., f,,, . This was implemented by first obtaining the solution on an 
equally spaced grid. The truncation error was then evaluated, and the grid was 
arranged according to the minimization problem. The final solution was then 
obtained on this grid. The results showed that, for the problems considered, the use of 
the optimal grid distribution gave at least as much error reduction as doubling the 
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number of equally spaced points. A good representation of the truncation error is 
necessary, however. 

Gough et al. [ 1 lo] gave a related procedure, also l-D, based on minimization of a 
less clear measure of the truncation error. The sequence of operations is the same as 
above, and the use of a second iteration of the sequence was found to be of little 
effect. Klopfer and McRae [ 1551 redistributed the grid points in a 1-D shock tube 
calculation according to a linear relationship between the spacing and an error 
measure, the particular measure used being the leading term of the truncation error of 
the algorithm as calculated by Taylor series expansion in the curvilinear coordinate. 
After smoothing the spacing distribution, the new point distribution was calculated by 
integrating the new spacing distribution. This process was repeated at each time step 
and the time derivatives of the metric coefficients were calculated from the change in 
position of the points. It was found necessary to use artificial viscosity in the solution 
algorithm to stabilize the calculation with the adaptive mesh. 

In Schiff [238], patch boundaries are moved to follow shear layers in a supersonic 
jet counterflow solution. An outer boundary segment follows a moving bow shock as 
well. The coordinate system is regenerated after each time step of the flow solution. 
Here the time derivatives of the coordinates were included in the flow equations, so 
the scheme is consistently time dependent. Reddy and Thompson [226] treated a 
region of spreading vorticity by having the outer boundary move to maintain a 
sufficiently small value of vorticity thereon, with the coordinate system being 
regenerated at each time step. 

Haussling and Coleman [124] and Haussling [123] also have used consistently 
time-dependent adaptive schemes, with the coordinate system being regenerated from 
the elliptic system (G.6) to follow a moving free surface in the former and moving 
bodies in the latter. Chyu and Davis [47] and Steger and Bailey [261] also have 
treated moving bodies in time-dependent solutions. Moving bow shocks were treated 
in Thomas and Lombard [28 11, Lombard et al. [ 1761, Hindman et al. [ 1301, and 
Hall [ 1181. 

Dwyer et al. [72] had the grid points to move along one fixed set of coordinate 
lines, the t-lines, in response to first and second derivatives with respect to arc length 
along the fixed lines. This was accomplished by taking 

where S is the arc length, and b and C are adjustable parameters. Larger values of 
these parameters increase the sensitivity to the derivatives. The second derivative is 
included to continue the line concentration at solution extrema. (The same approach, 
but without the second derivative, was used by Dwyer et al. [ 7 1 I.) 

This equation is applied by setting q to successive integer values and determining S 
by carrying the quadrature to the point where the particular value of r,r is attained. 



74 THOMPSON, WARSI, AND MASTIN 

The grid was moved only after every few time steps of the physical solution since 
movement after each time step led to oscillations. There was some problem with 
excessive skewness developing in the grid and producing oscillations in the solution, 
particularly when the direction of the solution gradients differed significantly from the 
direction of the fixed coordinate lines. There were also problems with Neumann 
boundary conditions in the physical solution causing the coordinate lines to collapse 
to the boundary. The authors suggest that the procedure of Potter and Tuttle [219] 
might be used to redefine the c-lines between the v-lines formed by connecting the 
new point locations in order to reduce the amount of skewness that develops. Dwyer 
[73] also used an adaptive grid in which the points are constrained to move along 
one set of the original coordinate lines in response to the developing gradients in the 
physical solution. An order of magnitude improvement in speed was obtained, but 
some problems with excessive skewness were encountered. 

Holst and Brown [ 1351 used the GRAPE code of Sorenson and Steger [25 11, 
discussed in Section K, to generate the coordinate system with an adaptive 
reclustering procedure for points on an airfoil surface for a 2-D transonic full- 
potential solution. After a calculation on a preliminary grid, the points on the airfoil 
were redistributed to decrease an error measure evaluated from the preliminary 
solution. A smoothing was applied to this new distribution of boundary points, and 
the error measure was checked again using cubic spline interpolation among the 
preliminary solution values. This process of redistribution followed by smoothing was 
repeated until the error measure was within a tolerance at all points. The coordinate 
system was then regenerated with the GRAPE code, and the flow solution was 
recalculated. The particular error measure used was the product of the cube of the 
local arc spacing and the second derivative of the pressure with respect to arc length. 
It was noted that use of the square of the are spacing produced too much clustering 
near the leading edge. The adaptive grid gave sharper shock capturing and 
improvements in the accuracy of lift and drag of more than 50%, equivalent to 
nonadaptive grids with two and three times more points. 

Kovenya and Yanenko [ 1591 move an initial coordinate system according to 1-D 
diffusion-type partial differential equations with the d@%sion coefficients dependent 
on the magnitude of the gradient of the sum of the magnitudes of the physical 
solution quantities in one direction, and dependent on the magnitude of the body 
curvature in the other. Thus, with the body an q-line, 

with q defined as the sum of the magnitudes of the physical solution quantities, K the 
body curvature, and /I, pi, 6, and e being chosen constants. The problem treated was 
the blunt body shock. The coordinate system and physical solution were done in 
separate time steps, several steps of the former being taken between each step of the 
latter. Both solutions were implicit. Examples were given of adaptation to both the 
bow shock and the boundary layer. Grid oscillations occurring for high Reynolds 
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number were countered by freezing the coordinate system as the steady state was 
approached. 

In Ablow and Schechter [l] points were distributed so as to minimize the sum of 
the squares of the derivatives of the dependent and independent variables for solution 
of the Poisson equation. 

In Rai and Anderson [222, 2233, points in large error regions are made to attract 
other points, while points in regions of small error repel other points. This is accom- 
plished by using the local deviation of some error measure from its average over the 
field as a driving force by which each point induces motion in all other points. Thus 
the time derivatives of the curvilinear coordinates are taken as the sums of the 
difference between the magnitude of the local error measure and the average value of 
this magnitude on that coordinate line, with each difference attenuated by a power of 
the distance to the point in the transformed plane. The time derivatives of x and y are 
then calcuated from & and q1 by the transformation relations. For example, in l-D, 

W.3) 
Cxt>i = (C)d(L>iv i = 2, 3,..., IMAX - 1. 

Here e is the error measure, and rij is the distance between the points i and j. This 
scheme prevents the collapse of points onto each other, since as a point approaches a 
point where the derivative in the transformed plane exceeds the average, this 
derivative will be decreased ultimately below the average and the approaching point 
will then be repelled. Collapse of points is further hindered by the fact that the 
relations for xt and y, are dependent directly on the point separation through the 
Jacobian and hence the speed of movement will decrease as the points approach. 
Thus in the above relations, as &. approaches infinity, i.e., as the points close 
together, x, approaches zero. 

Several error measures were considered. One measure used was the product of the 
first coordinate derivative and the third solution derivative, i.e., the usual truncation 
error in terms of the mesh spacing, the first term of (0.4), and problems were encoun- 
tered with excessive stretching in regions of low gradients. As noted in Section 0, 
however, the rate of change of the spacing can be more important than the spacing in 
regions of rapid expansion of the coordinate system. Therefore, a more appropriate 
measure of the truncation error would probably have been the product of the second 
derivative of the coordinate and the solution, i.e., the second term of (0.4). Another 
measure considered was the second derivative of the solution variable divided by the 
first derivative of the coordinate, which is more of a measure of the error in the time 
rate of change in the solution than in the solution itself. 

In an application to inviscid flows with shocks, Rai and Anderson [224], first 
derivatives of the velocity or pressure were used successfully as the error measure. 
This causes the grid points to move so as to have the same change in the physical 
variable between each pair of points. This points out the fact that the error measure 
used to drive the adaptive grid, i.e., 1 e] in (M.3), does not have to actually be a true 
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error since the impetus for the grid motion is not ] el itself but the deviation of ]e ] 
from its average value. It is thus quite reasonable to have the grid move to achieve 
the same change in a physical quantity between successive lines. This in effect 
reduces the second derivative of the variable with respect to the curvilinear coordinate 
and thus reduces terms in the true error expression. The adaptive grid in [224] 
showed sharper shocks, with much less oscillation and a consequent increase in 
accuracy with the same number of grid points. ’ 

Two expedients were introduced to prevent excessive stretching. One of these was 
the replacement of the solution variable in the error measure by a weighted average of 
the solution variable and the value from a linear distribution of the variable. The 
other was an exponential attenuation of the calculated grid speed according to the 
ratio of the current local Jacobian to its initial value when this ratio, or its inverse, 
exceeds a specified value. Thus the grid movement will be reduced wherever the local 
Jacobian begins to depart significantly from its original value. 

The need for such controls on the grid motion would be lessened if a better error 
measure were developed. One problem, however, is that the same grid must suffice for 
all variables so that the error measure must reflect some influence from this entire 
solution. This was attempted by using a norm of the vector of individual error 
measures to represent that of the entire solution. The adaptive grid was found to be 
not only capable of increased accuracy but also of faster convergence of the solution. 

This concept of grid control was extended to cause coordinate lines to move 
toward alignment with shocks in Rai and Anderson [224 1. This was achieved by 
adding grid point velocities proportional to the product of the magnitudes of the < 
and q derivatives of some physical variable, such as pressure or density, that varies 
strongly across the shock. As before, this effect is attenuated with an inverse power of 
the distance from the point of influence. A sign changing factor causes these 
velocities to have the effect of rotating coordinate lines toward alignment with the 
shock. Successful alignment was achieved for several examples of oblique and curved 
shocks. 

The development of moving grids for higher dimensional problems has weakened 
the direct relation between the grid and solution which was responsible for the strong 
distortions encountered in Lagrangian methods or the method of Harlow described in 
Section N. A scheme which allows the grid some movement with the solution, but 
without strong distortions, was developed by Yanenko et al. [326,327]. Suppose the 
solution of a fluid flow problem with velocity component u and u is required. The 
idea of Yanenko etal. is to allow the mesh to move by minimizing a linear 
combination of three quantities. The first quantity measures the distortion in the mesh 
and is given by 

h, = (CL - I?$ + cry + v$. (M-4) 

When h, = 0, the mesh is conformal. The second measures the degree to which the 
grid moves with the fluid and can be expressed by the quantity 

h, = (u -xl)’ + (v - y,y. (M-5) 
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The third term is designed to give a fine mesh whenever the gradients of the flow 
variables become large. This expression could be problem dependent but would take 
the general form 

where q is a function of the flow gradients which may include density and energy as 
well as the velocity components and a is a parameter to be selected. For the solution 
of gas dynamics problems, one might select q to be some linear combination 

W.6) 

where in this equation Vf = (f,, f,,). 
The grid is then to be constructed so as to minimize the functional 

W-7) 

where 

y=~,h,+~,h,+~,h, W-8) 

and er, sr, .sj are parameters. The Euler equations for this variational problem, which 
are generally lengthy, are then combined with the system of fluid flow equations to 
give a new system which determines the fluid variables and the coordinates of the 
grid points at each time step. This same technique can also be used when an error 
estimate is available. In that case a moving mesh is constructed so as to minimize the 
error in the solution. Examples are given where the above scheme is used to move the 
coordinate lines in the solution of flow over a blunt body. Although the procedure is 
formulated for general movement of the grid points, in the actual applications given, 
the points were moved one-dimensionally along straight lines connecting the body 
and outer boundary. The resulting coordinate system gave good resolution of a 
boundary layer and shock wave. A grid generation procedure of this type, where the 
grid coordinates are solved simultaneously with the flow equations, is also applicable 
to problems with moving boundaries. 

Brackbill and Saltzman [21,22] develop an elliptic generating system from a 
variational approach based on minimizing the integral of 

KW’ + owl + A,(w fi) + &m . w W-9) 

over the field. The Euler equations for this functional provide the elliptic partial 
differential system for ( and q, which are quasilinear equations in all six second 
derivatives with coefficients that are quadratic functions of the first derivatives. 

The term involving w  causes the mesh to adjust so that wg is more nearly constant 
over the mesh. The last term in the functional serves to minimize the departure from 
orthogonality, while the first term, which contributes the Laplacian to the Euler 
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equations, regulates the smoothness. Larger values of & and L, give added weight to 
the corresponding features in the solution. The weight function, w(x, JJ) may be taken 
to be a measure of some physical solution gradient or magnitude, or may measure the 
truncation error in some manner. Obviously, the mesh will tend to be line where w  is 
large. The use of variational formulations has also been mentioned by Dickson [66]. 

Numerous analytic stretching transformations have been used to resolve boundary 
layers and shocks in the solution of viscous flow problems. Most of these transfor- 
mations are implemented manually by examining the development of the solution and 
selecting the appropriate transformation. An automatic procedure for concentrating 
grid points in regions with large gradients has been proposed by Tolstykh [292]. If it 
is necessary to concentrate v = const coordinate lines in some viscous layer, then a 
transformation 

r = a(u’ + v*y* + bq + c (M. 10) 

is used where a, b, and c are constants. The first term insures that rapid changes in 
velocity will lead to rapid changes in the tranformed variable C, while the coefficient 
of the second term can be used to assume that & > 0 and thus crossover of coor- 
dinate lines will be prevented. The translation term c and proper scaling of a and b 
will lead to a variable [ with the same range as tf. This scheme is designed for the 
solution of time-dependent problems. The movement of the grid could be observed 
and when necessary the coefficients a, b, and c could be adjusted. In some cases it 
might be desirable to choose coefficients which change along < = const coordinate 
line thus allowing for greater stretching where it can be done without causing 
crossovers. 

Winslow [321] has proposed the use of a diffusion-type coefficient for adaptive 
coordinate control based on (G.12). Here the nonnegative function D must be small 
where close spacing is desired. If D is made proportional to a gradient of a physical 
variable, then the spacing is controlled by the second derivatives of the physical 
variable. It is also noted that this form is obtainable as the Euler equations for 
minimization of the functional 

!ll D[lVtl* + IVvl*] dxdy. 

N. TIME-DEPENDENT COORDINATE SYSTEMS 

A coordinate system may need to be time dependent because the boundaries move, 
either of themselves or in response to influences of the physical problem, or because 
the system is made to adjust itself to concentrate lines in developing regions of large 
gradients. The simplest procedure is to regenerate the coordinate system at each time 
step using the new boundary locations, or other factors, from the physical solution at 
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the previous time step, the solution for the new coordinates at each time step thus 
being done separately from the physical solution at that step. Alternatively, the 
equations for the coordinate system can be added to the system of physical solution 
equations and the entire set of equations solved simultaneously at each time step. 

In any case, with the partial time derivatives (at fixed x and u) in the physical 
solution equations replaced by partial time derivatives at fixed values of the 
curvilinear coordinates, the grid in the transformed plane is fixed even though the 
coordinate system in the physical plane is in motion. This introduces time derivatives 
of the Cartesian coordinates into the transformed physical solution equations, in the 
role of additional convective terms. Since the time derivatives of the physical solution 
are thus taken at fixed points in the transformed plane, the concern of Moretti [204] 
with the need for analytical mappings in order to be able to evaluate time derivatives 
at fixed points in the physical plane is obviated. 

Among the category of time-dependent coordinates, the earliest works are due to 
McVittie [ 1941 and Walkden [305]. In both of these references the mechanics of 
special relativity has been used to obtain the classical formulae by approximations in 
terms of l/c*, where c is the speed of light. The former is devoted to the gas 
dynamical equations while the latter deals with the complete Navier-Stokes system. 

Lagrangian methods have been used for the solution of simple flow problems, but 
are not generally applicable to complex flows where the grid becomes highly 
distorted. A moving mesh scheme, which inherits some of the advantages of 
Lagrangian coordinates, is the contour dynamics method of Harlow [ 1211. The 
method is described for 1-D fluid flow. Each fluid variable is assigned a grid and that 
grid is moved so that the fluid variable remains constant. Since each fluid variable 
has its own grid, interpolation between grids is necessary due to the coupling of the 
fluid flow equations. Examples are given which show how the method automatically 
achieves the proper resolution of each fluid variable. 

In the work of Schiff [238], Haussling and Coleman [ 1241, and Haussling [ 1231, 
the coordinate system is regenerated by solving the elliptic generating system with 
new boundary locations at each time step. In Schiff, the moving boundaries are a bow 
shock and several artificial internal boundaries separating patched coordinate systems 
in different flow regions, while in Haussling and Coleman the moving boundary is a 
free surface being strongly deformed by wave action. Specified motion of two 
oscillating regenerated by a shearing transfor- 

mation to follow a moving bow shock. Daly [60] moved a channel wall normal to 
the channel axis, adjusting the mesh points between the wall and axis by a stretching 
distribution. Rizzi and Bailey [229] also used a moving coordinate system to follow a 
bow shock. Reddy and Thompson [226] used an outer boundary that moved to 
contain a developing region of vorticity. Chipman and Jameson [42] treated a 

581/47/M 
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pulsating symmetrical airfoil (oscillating thickness) by using one set of coordinate 
lines parallel to the instantaneous body contour (and to the centerline fore and aft of 
the airfoil), the other set being simply straight normals to the centerline. 

Chyu and Davis [47] treated a pitching airfoil by first generating grids for the two 
extreme airfoil positions. Each grid point was then moved along a circular arc 
between the two extreme positions of the point, the arc radius of curvature being 
taken equal to the distance from the airfoil rotation axis to one of the extreme 
positions. A similar procedure was used in Chyu and Schiff [46] for an oscillating 
flap. Some difficulty was encountered near the hinge line, and some smoothing of the 
points was used locally in that vicinity. Steger and Bailey [261] treated an airfoil 
with an oscillating aileron by first generating a coordinate system for the undeflected 
configuration, and then, with the motion of the aileron trailing edge being approx- 
imated as normal to the undeflected airfoil chord line, all points aft of the hinge 
points were simply moved normal to the undeflected chord in proper proportion to 
the distance from the hinge point as time progressed. This procedure results in a coor- 
dinate line discontinuity on the line emanating from the hinge line on each side. The 
length of the aileron also changes artificially with time since its trailing edge is made 
to move normal to the undeflected chord. In spite of these inconsistencies, good 
results were obtained for deflections of 12’. 

In Thomas and Lombard [281] the coordinate system was regenerated at each 
time step with new boundary locations (on a bow shock). In an effort to preserve 
fully conservative form, however, the time derivative of the Jacobian was calculated 
from an equation obtained from the continuity equation by setting the density to a 
constant, rather than being evaluated from the differences between new and old values 
of the coordinates. This concern is discussed more fully in Section P. In a later work 
Lombard et al. [ 1761 found that the expansion of the time derivative of the product of 
the Jacobian and the physical variables, using this expression for the time derivative 
of the Jacobian, could cause instability when the Jacobian decreased with time, 
particularly when a shock moved toward the body. They therefore returned to the 
nonconservative form in the time derivatives used by most workers. 

A somewhat different approach to the generation of the new coordinate system at 
each time step was used by Hindman et al. [ 1301 with a moving bow shock. In this 
work the elliptic generating system (G.6) was differentiated with respect to time. With 
x and y taken from the previous time step, these equations are linear partial 
differential equations for x, and y,, which were solved by a direct method. New 
values of x and y were then calculated from x, and yl. The new Jacobian at each time 
step was calculated from (P.lO), this equation being solved by the MacCormack 
method. 

Dwyer et al. [72] use a time-dependent system that adapts to developing gradients 
in the physical solution as described in Section M. The coordinate system motion in 
time is discontinuous, however, occurring only after every few time steps of the 
physical solution. Rai and Anderson [222, 2231 have the grid points move in 
response to the cumulative effect of attraction and repulsion from all other points in 
accordance with the difference between the local gradient from the average. 
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Kovenya and Yanenko [159] used diffusion-type equations to govern grid point 
motion, with the delusion coefficients related to the solution gradients. In 
Yanenko et al. [327], the grid moves to minimize a functional containing measures of 
the departure from orthogonality as well as the solution gradients on the curvilinear 
system. Shanks and Thompson [244] completely coupled the equations for the coor- 
dinate system with those for the flow solution, solving the entire set of difference 
equations simultaneously at each time step, using the elliptic generating system 
(G.lO). The motion of the coordinate system was caused by deformation of a free 
surface. Finally, the work of Wilkins [318] on the development of a tensor artificial 
viscosity to stabilize Lagrangian hydrodynamic grids may be of some use in 
stabilizing time-dependent grids in general. 

0. TRUNCATION ERROR 

The truncation error in difference expressions on a curvilinear grid is dependent 
not only on the local grid spacing but also on the rate-of-change of that spacing and 
on the departure of the grid from orthogonality. These effects are illustrated in 1-D in 
the present section. 

The expression for the 2-D first derivative f, is 

f, = g - “2&f, - x,fJ (0.1) 

Applying this to a 1-D case, with x, = y, = 0, we have 

f, = f,lY,. (0.2) 

The simplest central difference representation of each of the q-derivatives yields 

fy = [G+I -.&-,)/(Yj+, - ~i-l>I + Z (0.3) 

where T is the truncation error. Taylor series expansions in y about the central point 
then show the leading terms of the truncation error to be 

where y, and y,,,, are the central difference representations of these respective 
derivatives, 

Yq=Ti(Yj+l-Yj-l>v Yv~=Yj+l-2Yj+Yj-I* (0.5) 

The first term is the familiar second-order term due to the grid spacing. The second 
term arises from the unequal spacing of the grid lines and introduces a numerical 
diffusion effect. This term, and the corresponding term 4 y,, f,,, occurring in the trun- 
cation error of the second derivative representation, was given by de Rivas [227]. 

The representation off, is thus truly second order only if y,, N y:, which allows 
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only a very slow change in spacing. This would be the case for y N -log q (for 
rl Q l), but a function of this type would have excessively wide spacing away from 
the boundary if a very close spacing were needed near the boundary while the total 
range of y was large, as would be the case in boundary-layer type applications. In 
fact, de Rivas noted that better accuracy was obtained in the case considered with 
y N r2. It is not sufficient to state the truncation error of the expression forf,, in terms 
off,,, Aq2 and thus conclude second order, because f,,, is dependent on the coor- 
dinate system, and Aq is not required to be small. The implication of second order on 
this count in de Rivas thus cannot be justified. 

If the system is not orthogonal, then the same type of 1-D analysis yields the 
following additional term in the truncation error: 

-%cot ~)2Y?&x - (cot 4Ydry, (0.6) 

where 8 is the angle between the coordinate lines. (Caspar and Verdon [30] imply 
incorrectly that Taylor series expansions cannot be used to develop difference 
expressions on nonorthogonal systems.) Thus for second-order accuracy it is 
necessary that 

y,,cote- y;. (0.7) 

If the intersection angle is less than 45”, then this requirement would already be met 
if Y,, 21 yt as required above. For this reason departure from orthogonality of up to 
45” can be considered tolerable. Forester [84] suggested that the ratio of successive 
spacings not exceed 2, and that the departure from orthogonality not exceed half a 
radian. The results of Shang [242] show some kinks in the solution contours that 
appear to coincide with regions of large spacing changes in the grid that radiate 
outward from the boundary. 

Similar expressions for the truncation error in the higher derivatives and in higher 
dimensions can be derived, though the manipulations are tedious. Some such 
expressions are given in Mastin and Thompson [ 1861 and Thompson and Mastin 
[284]. It was shown in Mastin and Thompson [ 1851 that sufficient conditions for 
second order in the three-point central difference expressions for both the first and 
second derivatives is that there exist positive constants K, A4, N such that 

IhhiI>K g22 < m, 811 < 47. (0.8) 

Further discussions of error associated with the coordinate system are given in 
Mastin and Thompson [186]. 

Holst [ 1331 noted that the accuracy of the physical solution was improved by 
higher order calculation of the metrics. In this regard, Lau [ 1661 has given a higher 
order representation for the Laplacian in 3-D, obtained by differentiation of a 
triquadratic interpolation function in the curvilinear coordinates. Graves [ 1121 
recommends fourth-order difference expressions for the metrics. The need for greater 
accuracy in the metrics was also noted by Ives and Liutermoza [ 1441, where fourth- 
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order evaluation of the metrics was used with second-order representation of the flow 
derivatives. 

It is, of course, possible to derive higher order difference expressions involving 
more points which account for additional terms in the Taylor expansions on 
nonuniform, nonorthogonal grids. The expressions are long, however, and this 
approach, which would be equally applicable with randomly distributed points, takes 
no advantage of the smoothness inherent in a curvilinear coordinate system generated 
as an entity. The more appropriate course then is to use the more compact difference 
expressions and design the grid generator such that sufficient smoothness for the 
desired accuracy is achieved. 

Vinokur [298] developed criteria that must be met by point distributions in order 
for difference expressions to preserve a consistent order of accuracy on the 
nonuniform grid. These criteria are 

Is”/s’I = O(1) for first-order expressions 

@pq= O(1) 
(0.9) 

for second-order expressions. 

Here s is arc length along a coordinate line, and the differentiation is with respect to 
the other coordinate. Both arc length and the curvilinear coordinate are assumed to 
be scaled to the range O-l. These criteria were obtained from a consideration of error 
bounds and hence may be conservative. 

A line at which the spacing changes abruptly should be treated as a patch with 
special boundary conditions thereon. The effect of sudden changes in the line spacing 
is evident in the results of Dwyer et al. [72]. Here discontinuties in the solution 
contours clearly correspond to the locations of sudden spacing changes in the coor- 
dinate system. Crowder and Dalton [58] found the results on grids having sudden 
spacing changes to be less accurate than those obtained with uniform spacing, even 
though truly second-order difference expressions for the first derivatives on the 
uneven grid were used. The difference expressions used for the second derivative, 
however, were only first order on the uneven grid. 

The pressure contours in Birignen and MacMillan [20] show some tendency to 
falsely follow the course of the coordinate lines in a region of excessively wide 
spacing, exhibiting a spurious upstream influence in a supersonic flow. The problem 
of grid distortion affecting the accuracy of a numerical solution is not limited to the 
standard finite difference methods. The same problem is encountered by McCrory 
and Orszag [ 1911 in the solution of the diffusion equation by spectral methods. They 
used a 2-D grid on a square region. One set of coordinate lines consisted of equally 
spaced straight line segments parallel to a side of the square. The other set of coor- 
dinate lines consisted of piecewise linear curves with sharp corners. The finite 
difference and spectral solutions both exhibited approximately the same error at the 
sharp corners. 

Finally, the effect of mesh alignment on the generation of weak solutions for 
compressible flow is illustrated in MacCormack and Paullay [ 1801. Here it is shown 
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that the accuracy of such weak solutions may be increased significantly by alignment 
of the mesh with the location of the solution jump discontinuities. 

P. GEOMETRICALLY CONSERVATIVE FORMS 

Due to computational reasons, it is usually preferable to cast the equations of a 
physical solution in the so-called conservation law form. This is particularly true for 
cases involving shock waves or other phenomena characterized by very high 
gradients. In this connection, Anderson et cl. 161, Viviand [300], Vinokur [297], 
Thomas and Lombard [281], Warsiet al. [311], Eiseman and Stone [81], Warsi 
[ 3071, and others have given the complete equations of motion in the conservation 
law form. Considerable detail and generality is given in Eiseman [76]. There, 
differential forms and frame fields are used to obtain conservation law form for both 
time-dependent and time-independent cases. The work of Vinokur [297] is extended 
and the work of Viviand [300] is seen to come directly from the definition of 
differential 2-forms. In [6], the concept of killing vectors has been used to bring the 
equations in the conservation law form. 

References [281,307], respectively, use the control and material volume approach 
and explicitly state the equation which governs the time variation of the determinant 
of the metric tensor, i.e., fi, for time-dependent coordinates. The treatment in [307] 
is a straightforward application of some well-known vector and tensor formulae. 

The geometrically conservative representation of a first derivative in 2-D is given 
by 

which follows directly from the divergence theorem 

V.AdV= A.nds 
f P-2) 

with A = v, applied to a cell of the curvilinear coordinate system. Expansion of the 
derivatives leads to the nonconservative form 

fx = g-l’z(f~Ys -fnYs>. P-3) 

The central difference representation of the conservative form, with difference 
expressions for the metrics is 

(dfxlij = 4 Cti,)i+ 1.j - Wn)i- 1.j - dfu,)i,j+ 1 + dfrt)i.j- 11 
=fK+*.i(Yl+l,j+l - Yi+l,j-1)-J;:-l,j(yi-,,j+l - Yi-*,j-1) 

-fi,j+I(Yi+I,j+I - Yi-l,j+l) +.fi,j-I(Yi+l,j-I - Yi-I./-111. tpe4) 
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If f is constant this last expression gives f, = 0 as desired, since all of the y values 
cancel. With the coordinate derivatives evaluated analytically, the first equality of 
(P.4) becomes the expression for f,. This expression does not vanish for constant f, 
however, because the <-difference of y, will not be exactly equal to the q-difference 
of y,. This has the effect of introducing spurious source terms into the difference 
equations. The problem is that although y, and y, are evaluated analytically, and are 
thus free from error, (y,), and (JJ& must still be evaluated numerically with the 
result that (y,),, # (y,),. By contrast, with numerical representation of the metrics the 
difference expressions for yrV and y,, are exactly equal. 

The use of averages in numerical evaluation of the metrics can have a similar 
effect. Consider, e.g., the representation of f,,, obtained by replacing f with f, in 
(P.4). In order to avoid extending the expression two cells away from the central 
point, (P.4) is replaced by 

Here, 

(fxx)ij = (LT)Ljl’* [(fx Yv)i+ 1p.j - (fx Yq)i- 1/2,j 

- KYJi,j+ l/2 + df,Y,)i,j-l/21. 

(fx)i+ 1/2j = <g>F--‘IT2J [(fvv)i+ 1.j - dfyn)ij - @{Ii+ 1/2,j+ l/2 

+ til)i+1/2,j-l1/21* 

P.5) 

If the metrics at the half integer points are evaluated by averages among the 
neighboring integer points, these expressions will not vanish for constant f. If the 
coordinate system is generated with mesh points at all of the half-integer points, 
however, as well as at the integer points used in the physical solution, then the 
metrics can be evaluated directly by differences between neighboring points even at 
the half integer points. For instance, 

(Yg)i+1/2,j= Yi+1/2,j+1/2 - Yi+l/2,j-l/2’ 

With this procedure, it may be shown that all of the y values cancel exactly when f is 
constant so that the representation off,, vanishes as desired. There would, of course, 
be four times as many coordinate points as physical solution points with this 
procedure. This double grid approach has been used by Pope [218]. 

Shamroth and Gibeling [240] encountered difficulties with the conservative form 
as a result of the spurious source terms introduced by a differencing of the coordinate 
derivatives that failed to produce exact cancellation in the uniform case, particularly 
in regard to the pressure gradient terms. This problem is mitigated in cases where the 
remote value of the solution vanishes. Hindman et al. [ 1301 solved this problem by 
differencing the coordinate derivatives with the same one-sided expressions used at 
each sweep of the MacCormack method in order to preserve full conservation with 
that method. This point is discussed in more detail in Hindman [ 13 11, where it is 
shown that it is necessary that the metrics be differenced numerically by the same 
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difference representations used for the flow variables, rather than being differentiated 
analytically in order to preserve a uniform flow solution. 

With nonconservative form (P.3), where all the derivatives are expanded, the 
difference representations vanish in all cases with constant f since differences off 
appear explicitly. The conservative form, however, gives a better representation of the 
physical solution when the cell in the curvilinear coordinate system differs 
significantly from a parallelogram, since this form is an expression of the basic 
integral form. The conservative form represents the integral offy, on the side at i + 1 
bf;:+ l,j(Yn)i+l,/v i.e., using the local value of both f and the side length. The noncon- 
servative form, however, represents the integral on this side ash+ I,j(y,)i/, thus using 
the local value off but a nonlocal value of the side length. 

In 3-D, the difference representation of 

will not vanish identically for constant f. If the coefficient yIlzl - yrz,, is replaced by 
(y,z), - (yrz),,, etc., however, numerical cancellation will occur as noted by Thomas 
and Lombard [28 11. This substitution is, however, not unique, since (yz,), - (yz,)r 
would serve as well. One could, therefore, consider using an average of the two. 

Lombard et al. [ 1761 noted that a fully conservative form in the radial coordinate 
is not possible when the transformation is from cylindrical coordinates rather than 
Cartesian. This expresses the impossibility of a divergenceless radial vector field. 

It should be noted that the integral conservation equations, e.g., (P.2), must be 
stated in the physical plane. Integral conservation equations in the transformed plane 
must be derived from those in the physical plane. Hornby and Barrow [ 1361 show 
that the derivation of a certain difference method was based on an inappropriate 
application of integral conservation equations directly in the transformed plane and is 
therefore incorrect on nonuniform meshes. 

Another consideration regarding conservative difference forms arises with time- 
dependent coordinate systems. The basic integral expression of the rate-of-change of a 
quantity in a moving cell (Reynolds transport theorem) gives 

(P-7) 

where 

~=(u-xI)Yq-(~-Yyl)xv, lT=(v-y,)x,-((u-xx,)y,. (P.8) 

Again, expansion of the derivatives yields the nonconservative form (off &) 

(P.9) 

where ii and U are simply the above ~7 and v’ without xt and y,. 
Iff is constant in space and the velocity field is uniform, the nonconservative form 

(P.9), yields f, = 0, so that f remains constant as expected. A constant value off in 
the conservative form (7), will not maintain f a constant in the numerical represen- 
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tation. This occurs because the new value of the Jacobian calculated from the new 
values of x and y will not exactly equal the value from the equation obtained by 
settingf to a constant in (P.7), i.e., 

(P. 10) 

This occurs because in order to reduce this equation to an identity it is necessary to 
expand product derivatives, such as (x(Y&, and these expanded forms will not 
cancel exactly in difference form. Thomas and Lombard [28 1 ] attribute the 
oscillations experienced by Viviand and Ghazzi [301] to failure to evaluate the new 
values of the Jacobian in this manner. Viviand and Ghazzi noted that the oscillations 
did not appear with the nonconservative form, and attributed the problem to trun- 
cation error introduced by the coordinate system. 

The problem can be corrected by calculating the new Jacobian from (P.lO), as in 
Hindman et al. [ 1301 and Hindman [ 13 11, instead of directly from the new values of 
x and y. Another way, used in Thomas and Lombard [28 11, is to expand the time 
derivative (ffi), to f, fi+ f(h), and calculate (h), from (P.10). This, however, 
sacriticies full conservation in time, since then the numerical representation of the 
time integral of (f&), would not collapse telescopically to a difference between the 
limits. This representation did, in fact, prove to have problems of its own, as noted in 
a later work, Lombard et al. [ 1761, where instabilities arose when the Jacobian 
decreased in time as the bow shock approached the body. The authors chose then to 
adopt the nonconservative form (P.9), as used in many other works. The use of the 
unexpanded form of v fi),, with the new & evaluated from (P.lO), was not 
considered because the particular solution procedure used needed f, explicitly in the 
equation. Sankar et al. [237] added the conservative equation evaluated at the 
previous time step to the expanded nonconservative form at the current time step to 
alleviate the problem associated with the rate-of-change of the Jacobian. 

That the use of analytically defined metrics, and consequent loss of full conser- 
vation, can cause oscillations and instabilities was noted in Viviand and Ghazzi 
[301], Steger [260], and Lombard et al. [ 1761. As noted above, it is shown in 
Hindman [ 13 1 ] that the use of analytic evaluation of the metric derivatives in conser- 
vative form results in an inability of the algorithm to preserve a uniform flow 
solution. Vinokur [298] has given an example of a solution for which numerical 
evaluation of the metrics gave a more accurate solution than did analytical 
evaluation. Lombard et al. [ 1761 also found that the failure to satisfy axial metric 
identities exactly along a single line could cause oscillations. It was noted that it is 
possible to tolerate some failure to satisfy the metric identities if the error is not too 
large. Such errors were intrduced in this work at a singular point formed by the inter- 
section of five coordinate lines. This point was placed well downstream of the body in 
the wake. 

The need for conservative differencing of the coordinate derivatives was also 
pointed out by Steger and Bailey [261], Pulliam and Steger [220], and Steger [260]. 
Pulliam and Steger [220] suggested correcting for the lack of exact satisfaction of the 
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metric identities by subtracting the product of the (uniform) freestream value of a 
quantity and the divergence of the metric. This actually amounts to using a difference 
approximation of the expanded form of the derivatives without taking advantage of 
analytic cancellations. For example, (P.7) would be written as 

(P.11) 

The parenthesis on the right side vanishes analytically, of course. This, however, does 
not completely correct the problem, because it is a local value, rather than the free- 
stream value, that is needed on the right, as noted by Lombard et al. [ 1761. With 
simultaneous equations this scheme is even less effective as a corrective measure. 

Q, MISCELLANEOUS TOPICS 

The general equations for transforming arbitrary partial differential equations have 
been collected in a paper by Oberkampf [209]. First- and second-order equations in 
both conservative and nonconservative form are considered. It is noted that equations 
in conservation form do not transform to equations in conservation form without 
redefining the dependent variable. The partial differential equations may have any 
number of dependent and independent variables. Several sample transformations are 
given and conditions for a nonvanishing Jacobian are derived. The transformations 
are very simple and involve only interpolation of boundary curves. The particular 
case of transforming the Navier-Stokes equations has been investigated by Gal-Chen 
and Somerville [91]. Suggested conditions on the derivatives of the transformation 
and the effects on stability are also set forth. Both of the above papers contain 
statements which are not true for general transformations. In the Appendix of 
Oberkampfs paper it is stated that a transformation defined on a region will be one- 
to-one if the Jacobian is nonzero, and Gal-Chen and Somerville state conversely that 
a one-to-one transformation has a nonvanishing Jacobian. 

There are several ways to derive difference expressions on an irregular grid. Most 
of these methods give rise to essentially the same difference approximation to a 
partial differential equation. The simplest method for quadrilateral grids is to view the 
grid as defining a transformation from the physical region to a computational region 
with rectangular cells. Then the partial differential equation is transformed to the 
computational region by a change of variables and all derivatives are approximated 
by difference expressions in the rectangular grid. Another popular method, which also 
is used for triangular grids, is to derive difference equations by computing Taylor 
series expansions at the grid point and its neighbors. For the solution of Laplace’s 
equation or other equations which obey a variational principle, difference equations 
can be developed from the minimization of a quadratic form. 

Other methods are not as well known as the above but warrant consideration due 
to theoretical or practical reasons. Girault [ 1031 has developed a method for 
generating difference equations using the weak form of the equations. This derivation 
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allows Girault to apply results of functional analysis and finite element theory to 
prove convergence results and establish error bounds. Although the difference 
formulations which are given for second-order elliptic equations are not those 
generally used, a nine-point molecule is generated and it should work equally well in 
most applications. The analysis and a numerical example point out the adverse effect 
of grid distortion on error. 

When a computational grid is defined, one usually thinks of the physical region 
being partitioned into rectangular, triangular, or possibly hexagonal cells. Paskonov 
[214] starts at a more primitive level. A simply connected two-dimensional physical 
region is assumed with a finite number at grid points. Initially, no ordering or grid 
neighborhood structure need be defined. The ordering is defined by constructing a 
spiral beginning at the boundary and passing from grid point to grid point until all 
grid points are indexed. Now suppose the numerical solution of a second-order partial 
differential equation is desired. Then at each grid point P, five neighbors are selected 
which, as far as possible, are equally distributed in terms of angular direction from P. 
A Taylor series at P is truncated after the second-order terms and evaluated at each 
of the five neighbors. The resulting five equations then determine approximations for 
the live first- and second-order partial derivatives. In this manner a six point 
difference molecule is constructed at each interior grid point. An attractive feature of 
this scheme is that grid points can be easily added or removed from the physical 
region and the ordering scheme can be repeated with the new set of grid points. A 
similar procedure for defining difference equations on an arbitrary grid was developed 
by Liszka and Orkisz [ 1751. At each grid point eight neighbors are selected with two 
in each quadrant. The live first- and second-order difference expressions are then 
obtained as the least-squares solution of the truncated Taylor series. The solution of 
this overdetermined system of eight equations results in a nine point difference 
molecule. By using more than five neighbors, the authors claim greater accuracy and 
less difficulty with ill-conditioned matrices. 

A novel approach in looking at difference formulations was taken by Chen and 
Caughey [39]. As is well known for functions of one variable, the central difference 
expressions give the exact values for the first and second derivatives of quadratic 
polynomial. In this report it is observed that the usual difference formulations on 
nine-point molecule of a curvilinear coordinate system can be derived by using the 
analogous concept in two dimensions. The difference approximations are derived by 
considering the transformation variables x and y and the solution of the partial 
differential equation to be polynomials of second degree in both 4 and q, indepen- 
dently, which interpolates the data given at the nine grid points of the molecule. The 
solution of the difference equation would then be exact whenever that solution along 
with x and y were quadratic in both l and q. It was further observed by Chen and 
Caughey that this concept could be extended to derive higher order approximations 
on larger difference molecules. Cubic interpolation polynomials give rise to difference 
approximations on sixteen-point molecules. Improved accuracy was reported in the 
solution of a nacelle flow problem. The use of the third-order difference approx- 
imation for first derivative instead of central differences also improved the 
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convergence rate of the relaxation process used to solve the transonic flow equation. 
A complicating factor in using the third-order scheme is the one-sided bias of the 
difference equations. In some cases it is necessary to change the direction of the 
differencing to facilitate the implementation of boundary conditions. Both the second- 
and third-order schemes are also applicable to three-dimensional problems. 

Levy et al. [ 1731 used a local Cartesian system at each axial location in a curved 
pipe, with the origin on the axis and the system rotated to align one coordinate axis 
tangent to the pipe axis. The solution equations are written in terms of the vector 
components in this local system. Thus, the dependent variables at each axial position 
are the local contravariant components in a curvilinear system. The overall coor- 
dinate system is not a curvilinear system, however, but rather a set of local Cartesian 
systems. The component equations used are thus not valid since they are written in a 
Cartesian system but differences are not taken along straight lines. 

Finally, the question of transferring an infinite region to a finite one is considered 
by Grousch and Orszag [ 1171, where it is noted that such procedures are appropriate 
for use with physical solutions that vanish rapidly or approach a constant value at 
infinity. 

R. CONCLUSION 

A numerically generated coordinate system is an essential part of most numerical 
solutions of partial differential equations on regions with general boundaries. With 
such coordinate systems, codes can be written that are very general in their 
application, with all computation done on a fixed square grid in the transformed 
plane regardless of the shape and movement of the physical boundaries. 

Of course, different applications may be better served by different approaches to 
coordinate generation. Thus physical solutions with relatively gradual variations may 
be treated without the coordinate system control that is required in rapidly varying 
solutions. Similarly, relatively simple geometric configurations can be treated without 
the special care that is necessary to ensure smooth coordinate systems in more 
complex configurations. Therefore, for relatively simple configurations and/or 
geometrical configurations a wide choice of coordinate generation procedures exists. 
The more demanding problems and configurations, however, require more of the 
generation system. 

In general, the coordinate system should have lines concentrated in regions of 
expected high variation of the physical solution, but the system should be smooth and 
the spacing should not change too rapidly. Orthogonality is not necessary, but the 
departure therefrom should not be excessive, although quite large departures can be 
tolerated. Ultimately, the coordinate system should be coupled with the physical 
solution thereon, so that the coordinate line spacing continually adapts to resolve the 
developing variations in the physical solution. 

The elliptic generating systems produce the smoothest coordinate systems for 
general boundary point distributions, while the algebraic generating systems are the 
fastest procedures for boundary point distributions not too far removed from those 
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for which the methods were designed. The means of control of the coordinate line 
distribution is well understood, but its automation for general configurations is in 
need of considerable further development. There is also a great need for further 
theoretical study of the error introduced by general coordinate systems into the 
solutions thereon. General 3-D configurations with several intersecting surfaces 
require considerable further development, although the general theory of many of the 
present generating systems is applicable. Such configurations are probably best 
treated by patching together simpler subregions with sufficient continuity at the 
joining surfaces or by embedding simpler coordinate systems in larger systems. A 
very wide variety of configurations is possible, and further innovation should follow 
rapidly in this area. 

Conformal mapping has the advantage that the partial differential equations 
acquire a minimal number of extra terms in the transformation when compared to 
other transformations, so that many solution procedures developed for Cartesian 
coordinates may be still applicable with only modest changes. There is little control 
over the coordinate system, however, so that it may not be possible to produce a 
system that is well adapted to the physical solution to be performed thereon. General 
2-D configurations can be treated, but the pointwise distribution on the boundaries 
cannot be specified. Moreover, the internal structure cannot be controlled, leading to 
problems with mesh dilation, internal clustering, etc. The generation of conformal 
mappings for general configurations can be quite involved, and there is, of course, no 
extension of the complex variable procedures to 3-D. Among the conformal mapping 
procedures, those based on the Schwarz-Christoffel transformation seem to have 
considerable versatility. The conformal mapping procedures based on a sequence of 
numerical and analytic transformations are effective for 2-D regions with multiple 
internal boundaries. 

The only real benefit from conformality is the simplicity of the transformed partial 
differential equations. If the requirement of a conformal system prevents the 
attainment of a coordinate line distribution that is well adapted to the gradients of the 
physical solution, then more points may be required, with a consequent loss in overall 
efficiency of the code. Also, the code may not be as easily applied to general 
configurations. For these reasons it is probably best not to insist on conformality in 
general. 

If the requirement of conformally is dropped, an orthogonal system can be 
achieved that still allows considerable control over the line spacing, and it is possible 
to generate a 2-D orthogonal system with control over the cell area which should be 
effective in preventing the excessive convergence of coordinate lines that sometimes 
occur in orthogonal systems. Another effective method of control is the application of 
subsequent 1-D stretching transformations to each set of coordinate lines indepen- 
dently. With orthogonality imposed, however, the spacing of the coordinate lines in 
the field cannot be completely controlled. 

Another procedure is the orthogonalization of an originally nonorthogonal mesh, 
and methods based on the construction of orthogonal trajectories are particularly 
effective in this regard. The orthogonalization of an original nonorthogonal system 
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probably allows the line distribution to be controlled more easily, especially for 
general configurations, than in methods designed to produce an orthogonal system 
directly. The retention of one set of lines from a nonorthogonal system allows the 
greater flexibility of such systems to be used to advantage in achieving a final 
orthogonal system with the desired line distribution. The spacing of points on these 
lines is not, however, controllable. 

A truly orthogonal system has the advantage of simpler transformed partial 
differential equations. It should be realized, however, that if the system departs 
sufficiently from orthogonality due to numerical error or approximations, then the 
omission of the extra terms present with nonorthogonal systems an assumption of complete 

orthogonality. 
The elliptic generating systems are probably the most generally applicable 

methods. Such methods take advantage of the smoothing tendencies inherent in 
elliptic operators to produce a relatively smooth coordinate system regardless of the 
irregularity of the boundaries or the point distributions thereon. These systems do not 
propagate boundary slope discontinuities into the field and do tend to produce coor- 
dinates that are more nearly orthogonal than do many algebraic systems. Specifically, 
with Laplace systems the mesh approaches conformal conditions far from the 
boundary. The main departure from a conformal system arises from specification of 
the boundary point distribution. Without this specification the Laplace system would 
fit the same boundary giving both a boundary point distribution and a conformal 
grid. The elliptic system methods also require less of the user in the specification of 
boundary distribution. The use of elliptic partial differential systems that exhibit some 
extremum principles in the physical plane will more reliably produce coordinate 
systems without overlapping of lines. This has been rigorously shown for Laplace 
systems and has been demonstrated also with control functions that are not too 
severe. A logical choice then is a system in which all the second derivatives appear in 
the Laplacian in the physical plane. 

Since elliptic generating systems are based on partial differential equations, 3-D 
application requires only the writing of the equations in 3-D. The determination, 
however, of practical configurations in the transformed plane becomes difficult for 
general 3-D shapes. The best approach is probably the use of a multiple contiguous 
block structure, dividing the complicated regions into simpler regions. The automatic 
determination of the control functions to provide for specification of the angle of 
intersection of the coordinate lines intersecting the boundary and for the spacing of 
the first line off the boundary allows simpler coordinate systems to be embedded in 
larger systems to produce effective systems for complicated physical configurations. 
The use of the concepts from differential geometry should also lead to better 
treatment of general 3-D configurations. 
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The algebraic transformations are probably the most efficient procedures and can 
provide precise controls of the desired mesh structure, e.g., smooth embedding of 
Cartesian, polar, boundary layer, orthogonal, or other systems within global meshes, 
as well as specifications for boundary distributions and derivatives. In such methods 
clustering the boundary mesh at points with slope discontinuity can lessen the discon- 
tinuity that is propagated inward. Without such clustering the propagation can be 
restricted with local controls (from local interpolants) in the multisurface transfor- 
mation. Algebraic methods are more sensitive to boundary point distributions than 
are elliptic systems. Of such methods, the multisurface transformation method and 
those based on transtinite interpolation probably have the most potential of 
development for general application. 

General 3-D configurations are probably best treated by patching together simpler 
regions. Care must be exercised to insure sufficient continuity of the coordinate 
drivatives at the patch, however. In this regard, the automatic determination of the 
control functions in elliptic generation systems and the use of multisurface methods in 
algebraic generations systems to provide such continuity are probably the most 
promising procedures. 

The control of the spacing of the coordinate lines to concentrate lines in regions of 
large gradients is of utmost importance, and this concentration must be done 
smoothly; otherwise, the rapid change in spacing will seriously degrade the results 
through spurious artificial diffusion which may even be negative. This control can be 
accomplished with exponential control functions in the elliptic generating systems or 
through subsequent stretching transformations applied to a coordinate system 
generated by any means. In either case further development is needed to automate 
this control. The automatic determination of the control functions in elliptic systems 
for specified line spacing and intersection angle at the boundary is effective to this 
end. Progress toward such automation is also evidenced in the determination of the 
control functions, or the stretching functions, from boundary point distributions set to 
resolve expected gradients in boundary layer regions or the like. 

The ultimate use of coordinate system control is the dynamic adaptation of the 
system to follow the developing properties in the physical solution, and this is one of 
the most important areas in need of further effort. The imposition of force-like 
attraction of points and alignment of lines in regions of high solution variations is 
promising in this area. The embedding of influence functions in variational 
formulations to produce elliptic generating systems that control orthogonality and 
concentration is also of interest. Further effort is needed to determine the most 
appropriate error measures for use in dynamically adaptive systems of all types. 

The ability of time-dependent coordinate systems to automatically follow the 
motion of moving boundaries is well established. No interpolation, rezoning, or 
addition of points is necessary. The adaptive coordinate systems mentioned above 
are, of course, moving systems as well, and thus time-dependent systems should be of 
increasing importance. 

More development is especially needed in the understanding of all the aspects of 
truncation error induced by the nonuniformity of the coordinate systems. The 
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potential loss of accuracy that can result from too rapid a spacing change has already 
been mentioned. Further work should lead to practical means of predicting and 
reducing the truncation error through optimum distribution of lines and/or new 
difference representations. 

The geometrically conservative form is probably more capable of representing 
fluxes on general configurations. It is essential, however, that the actual difference 
equations be conservative else spurious gradients can occur in uniform solutions 
entirely from the coordinate system. The same consideration applies in the represen- 
tation of time-dependent systems. 

In final conclusion, the areas of most importance for further research are the 
analysis and reduction of error introduced by the coordinate system, the automation 
of control of coordinate line spacing to achieve both concentration and smoothness, 
the dynamic coupling of the coordinate system with the physical solution, and the 
patching together of regions to represent general configurations with sufficient 
continuity. The increasing interest and progress in the generation and use of 
numerically generated boundary-fitted coordinate systems are evidenced by several 
recent conferences devoted to this topic, and the proceedings of one of them [340] 
was designed to serve as an introduction to the state-of-the-art in this area for all 
concerned with the numerical solution of partial differential equations. Coordinate 
system generation and use can be expected to evolve at an even more rapid pace in 
the coming years, and it is only hoped that this present review will provide coverage 
of the developments thus far from which new directions can be charted. 
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